


Agile Software Development

7 February, 2022



Software Engineering Project failure Agile software development Scrum Final notes

http://www.xkcd.com

Agile Software Development

http://www.xkcd.com


Software Engineering Project failure Agile software development Scrum Final notes

Software Engineering

SE is not “just” programming / coding!
• A formal process to create software.

• Software: a collection of programs, procedures, rules and
associated documentation and data.

• Commercial software:
• has customers and users;
• has to meet certain criteria regarding quality, cost and

schedule.

• Development of commercial software needs to account for
scale and change.

• Need for engineering methods (systematic, disciplined,
quantifiable) and project management.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Software Engineering

What makes SE different from other engineering disciplines?

• We are early in history (compared to, e.g., civil engineering).

• Software is an intangible product.

• It is more difficult to see how much of a software product is
“done” than how much of a road is “done”.

• It may be more difficult to assign responsibility, and blame.

• Complex dependencies present problems for scaling the
development, and also the resilience of the product.
• Software is very susceptible to change (or change requests).

• Often during development, requirements change.
• It is tempting to assume that introducing changes into

software is easy.
• Even finished, there is often need for both corrective and

adaptive maintenance.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Overview

Part 1. What is agile development, and why do we want to
use it?

Part 2. How to use agile development in practice – Scrum

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Failed projects

• [Thomas01] in a UK study on IT projects, 87% failed

• [Jarzombek99] in a Department of Defence study: 75% failed

• [Jarzombek99] 46% of delivered software products was never
used (20% needed an extensive rework)

• [CLW01] 90% of code was never deployed
(80% of what was deployed was never used)

• [Pulse17] 14% of IT projects are deemed failures
• champions: ≥ 80% of projects are completed in time / budget
• underperformers: ≤ 60% of projects are completed in time /

budget
• on average: 97 / 1000 dollars wasted

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Some reasons why projects fail

• failing developer motivation

• hard to estimate completion time beforehand

• lack of communication

• lack of adaptability

• incorrect requirements

• lack of dedicated testing for parts

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

A recurring theme: changing requirements

• expected use does not match real use because customer does
not fully understand users

• the existence of a feature causes unanticipated new wishes

• requirements that are known but not specified

• I’ll know it when I see it.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

A key principle

Do not fight change.
Embrace it!

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Succesful projects (without SE methods)

• really stubborn coders

• small projects (that later got stuff added to them)

• projects that can be cut into small pieces and tested separately

• feature removal

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Gall’s Law

A complex system that works is invariably found to have
evolved from a simple system that worked.

A complex system designed from scratch never works and
cannot be patched up to make it work.

You have to start over with a working simple system

John Gall (1975) Systemantics: How Systems Really Work and How They Fail

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The agile manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

A plan-driven process model: Waterfall

• separation of concerns

• phases have clear
objectives

• certification (and
payment) of
intermediate products

• assumes fixed
requirements

• encourages
requirements bloating

• final deliverable: all
or nothing

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile development

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Satisfy the customer through

early and continuous delivery

of working software.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Welcome changing requirements.

Harness change for the customer’s

competitive advantage.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Business people and developers must

work together throughout the project.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Working software is the

primary measure of progress.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Simplicity is essential.

Do as little as possible.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Convey information to and within the

team through face-to-face conversation.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Build projects around motivated individuals.

Give them space and support.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

The best work emerges from

self-organising teams.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

At regular intervals the team

reflects, then tunes and adjusts

their behaviour accordingly.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Development should be sustainable.

Maintain a constant pace.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Agile principles

Continuous attention to

technical excellence and good design.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Core practices
• time-boxed iterations

• between one and six weeks, set beforehand
• no requirements may be added or changed during an iteration
• requirements may be removed if it seems that the deadline will

not be met (but only if you really have to)
• incremental delivery

• risk-driven and client-driven planning
• get a working product ASAP, build from there

• communication
• regular communication between customers and developers
• evolutionary requirements analysis and adaptive planning using

results of early work
• constant in-team communication

• respect for developers
• teams have input on (take the lead in) planning and

organisation
• maintain a sustainable pace

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

A common mistake

“Oh yes, we’re using agile methods! We’ve just finished the plan
of what we’ll do in each iteration. . . ”

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

An agile anecdote

[9 January]

Celt: Fishing is huge, [my manager] and I went a little mad with
the feature creep and now it’s a monster. So I’m trying to slim the
requirements down.
Celt: But I am not sure what the right design is. Should I use
effects, or do everything from the fishing rod?
Celt: The old idea didn’t work well. I don’t want to get a few
months down the track and run into problems again.
Me: If is is even possible that you figure out something is wrong
months down the line, you’re doing it wrong...
Me: You make a single fish, a single rod, and a command to get
the fish with the rod. Then see what’s next.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

An agile anecdote

[20 February]

You: So how’s the fishing going? Are you still going with the agile
rewrite, or are you fiddling with the old system?
Celt: Agile, baby!
Celt: Well, it’s constantly functioning now. It works from start to
finish, and I’m pretty happy with how it is.
Celt: So everything I’m doing now is fleshing it out and making
parts of it more interesting.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

SCRUM

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The Scrum lifecycle

Initiate

Implement

Release

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The Scrum lifecycle

Initiate

Implement

Release

SprintSprint planning Sprint review

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The Scrum lifecycle

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The Scrum lifecycle

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Scrum Initiation

• create project vision

• create initial product backlog: prioritised requirement list

• create initial user stories
• designate Product Owner and Scrum Master

• Product Owner: product visionary (often: key stakeholder)
• Scrum Master: removing blocks, making decisions

• assemble development team (3-9 people, not necessarily just
programmers!)

• make agreements on development process (tool use, definition
of done, code reviews, etc.)

• create initial time estimates

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create project vision

Goal: a website for publishing and reading stories
Vision: Provide an easy way for authors to make their stories
available and earn money with them. Provide an easy way for
readers to find and read good stories.
Vision statement following a template:

• For 〈target customer〉
• who 〈statement of need/opportunity〉,
• the 〈product name〉 is a 〈product category〉
• that 〈key benefit/reason to buy〉.
• Unlike 〈main competitive alternative〉,
• our product 〈statement of primary differentiation〉

(Note: this is only an example; you can use your own template or
no template at all. A template only serves as a guideline.)

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create project vision
Goal: a website for publishing and reading stories
Vision: Provide an easy way for authors to make their stories
available and earn money with them. Provide an easy way for
readers to find and read good stories.
Vision statement following a template:

• For authors

• who wish to make their work available,

• the FictionPublishingSite is an online browser-based
publication tool

• that allows users to immediately make their story available to
the broad public.

• Unlike traditional publication methods,

• our product does not require formal approval by an editor,
but instead works with feedback from actual readers.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial backlog and user stories

• creating accounts
• As an author I can create an account so that my stories are

saved under my name.

• uploading stories or chapters
• reading stories online
• downloading e-books
• searching for stories
• discussion forums per story
• a rating system on several characteristics

• user accounts
• As an author I can edit the text of my story directly online, so

that I can easily correct small mistakes.
• As an author I can split and merge chapters so that I have full

control over what to publish when.
• As an author I can publish one or more chapters of a story, so

that I can provide a web serial to my readers.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial backlog and user stories

• creating accounts
• As an author I can create an account so that my stories are

saved under my name.

• uploading stories or chapters
• As a 〈role〉 I can 〈what〉 so that 〈why〉.

• reading stories online
• downloading e-books
• searching for stories
• discussion forums per story
• a rating system on several characteristics

• user accounts
• As an author I can edit the text of my story directly online, so

that I can easily correct small mistakes.
• As an author I can split and merge chapters so that I have full

control over what to publish when.
• As an author I can publish one or more chapters of a story, so

that I can provide a web serial to my readers.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial backlog and user stories

• creating accounts
• As an author I can create an account so that my stories are

saved under my name.

• uploading stories or chapters
• As an author I can upload a story from my computer so that it

is in my account, to edit or publish.
• As an author I can upload a single chapter from my computer

so that it is in my account.
• reading stories online
• downloading e-books
• searching for stories
• discussion forums per story
• a rating system on several characteristics

• user accounts
• As an author I can edit the text of my story directly online, so

that I can easily correct small mistakes.
• As an author I can split and merge chapters so that I have full

control over what to publish when.
• As an author I can publish one or more chapters of a story, so

that I can provide a web serial to my readers.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial backlog and user stories
• creating accounts

• As an author I can create an account so that my stories are
saved under my name.

• uploading stories or chapters
• As an author I can upload a story from my computer so that it

is in my account, to edit or publish.
• As an author I can upload a single chapter from my computer

so that it is in my account.
• reading stories online
• downloading e-books
• searching for stories
• discussion forums per story
• a rating system on several characteristics

• user accounts
• As an author I can edit the text of my story directly online, so

that I can easily correct small mistakes.
• As an author I can split and merge chapters so that I have full

control over what to publish when.
• As an author I can publish one or more chapters of a story, so

that I can provide a web serial to my readers.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial backlog and user stories
• creating accounts

• As an author I can create an account so that my stories are
saved under my name.

• uploading stories or chapters
• As an author I can upload a word/latex/html document from

my computer so that it is in my account.
• reading stories online
• downloading e-books
• searching for stories
• discussion forums per story
• a rating system on several characteristics

• user accounts
• As an author I can edit the text of my story directly online, so

that I can easily correct small mistakes.
• As an author I can split and merge chapters so that I have full

control over what to publish when.
• As an author I can publish one or more chapters of a story, so

that I can provide a web serial to my readers.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial backlog and user stories
• creating accounts

• As an author I can create an account so that my stories are
saved under my name.

• uploading stories or chapters
• As an author I can upload a word/latex/html document from

my computer so that it is in my account.
• reading stories online
• downloading e-books
• searching for stories
• discussion forums per story
• a rating system on several characteristics
• user accounts

• As an author I can edit the text of my story directly online, so
that I can easily correct small mistakes.

• As an author I can split and merge chapters so that I have full
control over what to publish when.

• As an author I can publish one or more chapters of a story, so
that I can provide a web serial to my readers.Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial backlog and user stories

• uploading stories or chapters
• As a 〈role〉 I can 〈what〉 so that 〈why〉

• reading stories online

• downloading e-books

• searching for stories

• discussion forums per story

• a rating system on several characteristics

Note: format for user stories not mandatory; just a guideline to
push your thoughts in the right direction.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create prioritised product backlog

• minimal account creation 1 day

• minimal writing and editing chapters in the browser 1 week

• figuring out the legalities of copyright and donations 2 days

• publishing chapters and full stories 3 days

• searching for stories by keywords and genre 1 day

• rating a story on language, plot, humour, etc. 1 week

• filtering story search based on ratings, length, newness 1 day

• extended account creation 2 weeks

• donation button hooked up to paypal 1 week

• . . .

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: Definition of Done

Definition of Done: a feature is finished if:

• the code is complete

• the code is entirely unit-tested

• the code has been reviewed and accepted by at least one team
member

• the feature has been acceptance-tested

• a manager has signed off on it

Note: this is just an example; teams decide for themselves what
their DoD is.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The Scrum lifecycle

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Sprint Planning

• refine and reprioritise product backlog

• improve relevant user stories

• (re-)estimate times for features in product backlog

• create Sprint backlog of tasks (4–16 hours)

• estimate time for each task using in-team discussions and
(e.g.) planning poker

• estimated time may not exceed available time!

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Planning poker

• all players are given a deck of cards:
1, 2, 3, 5, 8, 13, 21, 34 . . . and ∞, COFFEE

• when estimating a task, cards are played face-down

• cards are turned over at the same time, and discussion ensues

• repeat until a consensus or compromise is reached

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial Sprint backlog

• designing and setting up the database

8 hours

• setting up the server

5 hours

• “create account” webpage with one textfield

1 hours

• contacting legal to figure out copyright laws

13 hours

• story creation (overall data, without chapters)

3 hours

• chapter creation without any lay-out features

2 hours

• marking chapters in a story as published

5 hours

• presenting published chapter as HTML for publication

5 hours

• present story as a whole (with buttons, index)

21 hours

• . . .

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial Sprint backlog

• designing and setting up the database 8 hours

• setting up the server 5 hours

• “create account” webpage with one textfield 1 hours

• contacting legal to figure out copyright laws 13 hours

• story creation (overall data, without chapters) 3 hours

• chapter creation without any lay-out features 2 hours

• marking chapters in a story as published 5 hours

• presenting published chapter as HTML for publication 5 hours

• present story as a whole (with buttons, index) 21 hours

• . . .

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: create initial Sprint backlog

• designing and setting up the database 8 hours

• setting up the server 5 hours

• “create account” webpage with one textfield 1 hours

• contacting legal to figure out copyright laws 13 hours

• story creation (overall data, without chapters) 3 hours

• chapter creation without any lay-out features 2 hours

• marking chapters in a story as published 5 hours

• presenting published chapter as HTML for publication 5 hours

• present story as a whole (with buttons, index) 21 hours

• . . .

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The Scrum lifecycle

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Scrum Sprint

• usually 60 days (but here: 3 weeks)

• work is done in a common project room (or: digital room)

• the team has the authority and resources to find their own way

• daily Scrum meeting, attended by the full team

• daily build, integrating all code

• Sprint backlog continuously updated

• Sprint refinement: refining other items on the product backlog

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Stand-up Meeting

• short meeting: about 2 minutes per person

• people are standing up!
• everyone answers the following questions:

• What have you done since the last meeting?
• What will you do before the next meeting?
• What is getting in the way of meeting the Sprint goals?
• (MAYBE) Any missed tasks to add to the Sprint backlog?
• (MAYBE) Have you learned or decided anything new?

• reported blocks should be removed before the next meeting

• necessary decisions taken in one hour

• note: outsiders (e.g., CEO, customers) may attend, but not
speak (unless asked for clarification)

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Running example: stand-up meeting
• SM: What have you done since last meeting?

• P: I have designed the database

• SM: What will you do before the next meeting?

• P: Implementing the database, and putting some default users
in

• SM: What is getting in the way of meeting the Sprint goals?

• P: The database is different from what I learned. I may need
some help in figuring out the right SQL queries.

• SM: Okay, let’s update the planned time. How long do you
think this will take you?

• . . .

• Overall: discussion possible, but try to stay below 2–3
minutes each

• Scrum Master is responsible for keeping the meeting on track!

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The Scrum lifecycle

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Sprint review

• meeting attended by team, Scrum Master, Product Owner
and stakeholders

• discuss what has been accomplished!

• should include a product demo, no powerpoint!

• inform stakeholders of the system functions, choices,
strengths, weaknesses, and future trouble spots

• feedback and brainstorming on directions, but no
commitments

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Sprint retrospective

A short meeting where the team discusses:

• What went well in the sprint?

• What could be improved?

• What do we commit to improve in the next sprint?

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

The Scrum lifecycle

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

A different agile approach: eXtreme Programming

• emphasis on oral communication:
• minimal requirements documentation; just story cards
• everyone in one room, including at least one customer
• pair programming with regularly mixed pairs
• entire team responsible for all code

• evolutionary delivery through small, frequent releases
• test-driven development:

• automatic acceptance tests for all features
• unit tests for most code
• first write the test, then write the code that makes it succeed
• continuous integration on a dedicated machine that runs all

tests

• frequent refactoring

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Methodologies change

From a friend:

In college, I was trained as a top-down, structured software
developer. . . in Fortran. Waterfall development cycle was next.

Object Oriented if it existed, was just starting to take shape at Bell
Laboratories. Then down the road, drifted in to “Patterns”. And
of course, “Anti-Patterns”. Now “agile”. Oh, and CAS (computer

aided software) design is in that methodology mix too.

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Some final notes on culture

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Some final notes on culture

Source: The Culture Map: Breaking Through the Invisible Boundaries of Global Business

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Some final notes on culture

Source: The Culture Map: Breaking Through the Invisible Boundaries of Global Business

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Some final notes on culture

• People from different cultures have different ways of
communicating.

• Be aware of your own cultural habits and assumptions.

• If you aren’t sure how something is meant, ask.
• Have a discussion about your team approach to:

• feedback
• management
• sharing ideas
• resolving conflicts
• building the team
• timing and deadlines

Agile Software Development



Software Engineering Project failure Agile software development Scrum Final notes

Resources

• [Thomas01] Thomas, M. 2001. “IT Projects Sink or Swim.”
British Computer Society Review

• [Jarzombek99] Jarzombek, J. 1999. The 5th annual JAWS S3
Proceedings

• [CLW01] Cohen, D., Larson, G. and Ware, B. 2001.
“Improving Software Investments through Requirements
Validation.” IEEE 26th Software Engineering Workshop

• [Pulse17] Global Management Survey. 2017. “Success Rates
Rise – Transforming the high cost of low performance.” PMI’s
Pulse of the Profession

Agile Software Development


	Software Engineering
	Project failure
	Agile software development
	Scrum
	Final notes

