
Agile Software Design

19 February, 2020

Software Design Early decisions Modular design Agile design

Source: http://www.xkcd.com

Agile Software Design

http://www.xkcd.com

Software Design Early decisions Modular design Agile design

What can “design” mean?

Agile Software Design

Software Design Early decisions Modular design Agile design

What can “design” mean?

• a process: a phase between requirements and implementation

• the result of this process, embodied in documents or in code

Agile Software Design

Software Design Early decisions Modular design Agile design

Design in an agile setting?

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Design

Software Design Early decisions Modular design Agile design

Design in an agile setting?

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Design

Software Design Early decisions Modular design Agile design

Design in an agile setting?
Scrum Initiation

• create project vision

• create initial product backlog: prioritised requirement list

• create initial user stories
• designate Product Owner and Scrum Master

• Product Owner: product visionary (often: key stakeholder)
• Scrum Master: removing blocks, making decisions

• assemble development team (3-9 people, not necessarily just
programmers!)

• make agreements on development process (tool use, definition
of done, code reviews, etc.)

• create initial time estimates

To estimate times, you need to have some idea of what you’re
going to do.

Agile Software Design

Software Design Early decisions Modular design Agile design

Design in an agile setting?

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Agile Software Design

Software Design Early decisions Modular design Agile design

Design in an agile setting?
Sprint Planning

• refine and reprioritise product backlog

• improve relevant user stories

• (re-)estimate times for features in product backlog

• create Sprint backlog of tasks (4–16 hours)

• estimated time may not exceed available time!

Agile Software Design

Software Design Early decisions Modular design Agile design

What can “design” mean?

• a process: a phase between requirements and implementation

• the result of this process, embodied in documents or in code

Aspects:

• methodology, modeling languages

• structure of modules and code
• principles and patterns

• principle: rules you adhere to
• pattern: a general, reusable solution to a commonly occurring

problem

• appropriate use of programming language features

• notions of code quality

Agile Software Design

Software Design Early decisions Modular design Agile design

What can “design” mean?

• a process: a phase between requirements and implementation

• the result of this process, embodied in documents or in code

Aspects:

• methodology, modeling languages

• structure of modules and code
• principles and patterns

• principle: rules you adhere to
• pattern: a general, reusable solution to a commonly occurring

problem

• appropriate use of programming language features

• notions of code quality

Agile Software Design

Software Design Early decisions Modular design Agile design

Structure diagram

Agile Software Design

Software Design Early decisions Modular design Agile design

Class diagram

Agile Software Design

Software Design Early decisions Modular design Agile design

Use case diagram

Agile Software Design

Software Design Early decisions Modular design Agile design

Sequence diagram

Agile Software Design

Software Design Early decisions Modular design Agile design

Communication diagram

Agile Software Design

Software Design Early decisions Modular design Agile design

In an agile setting:

• minimal up-front design

• possibly: use flowcharts, bullet lists or just a textual
description

• can use UML, but also to document design as given by the
current code

Agile Software Design

Software Design Early decisions Modular design Agile design

What can “design” mean?

• a process: a phase between requirements and implementation
• the result of this process:

• decisions about the shape of your product
• the actual shape of your product

Aspects:

• methodology, modeling languages

• structure of modules and code – this lecture
• principles and patterns – next lecture

• software design principles: rules you adhere to
• software design patterns: solutions you use

• appropriate use of programming language features

• notions of code quality – throughout, and in three weeks

Agile Software Design

Software Design Early decisions Modular design Agile design

Design considerations: which are priorities?

• Extensibility – easily adding new capabilities

• Modularity – natural split in independent components

• Reusability – being able to reuse parts elsewhere

• Security – able to withstand attacks

• Privacy – able to protect (sensitive) user data

• Performance – performing quickly and/or in low memory

• Usability – easily used by a majority of likely users

• Robustness – able to operate under unpredictable conditions

• Fault-tolerance – able to recover from component failure

• Portability – works across different environments

• Scalability – adapts well to increasing user counts

Agile Software Design

Software Design Early decisions Modular design Agile design

Levels in software design

• Architecture: how the system is overall structured,
decomposed and organised into components, and interfaces
between them
• includes decisions like: programming language and platform
• various architecture patterns
• change later is hard (but not impossible)

• Module/component level: how the individual modules/classes
are structured and operate (Not early!)

• Others: for instance database design

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

Model-View-Controller pattern

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

Client-server pattern

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

Data-centered pattern

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

Pipe-and-filter pattern

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

Call-and-return pattern

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

Even-driven pattern

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

Three-tier pattern

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

Challenge: design an architecture

Agile Software Design

Software Design Early decisions Modular design Agile design

Architecture patterns

A warning

Avoid too much up-front design!

Agile Software Design

Software Design Early decisions Modular design Agile design

Levels in software design

• Architecture: how the system is overall structured,
decomposed and organised into components, and interfaces
between them

• Module/component level: how the individual modules/classes
are structured and operate

• Others: for instance database design

Agile Software Design

Software Design Early decisions Modular design Agile design

Modular design

• aims: each module (or, class) can be implemented separately;
change to one has minimal impact on others

• this cannot be achieved by simply chopping code into pieces

• some criteria are needed

• information hiding, loose coupling, high cohesion

• supporting principles: open-closed principle, substitution
principle, . . .

Agile Software Design

Software Design Early decisions Modular design Agile design

Information hiding

Information hiding

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Coupling

• strength of interconnections, measure of interdependence

• the more we must know about A to understand or work with
B, the higher their coupling

• increases with complexity and obscurity of interfaces

• high coupling means greater cost to making changes

• also makes it harder to test separate parts, and decreases
readability

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Content coupling

public void addUserProps(string user, string *props){
// actions to load the user into variable myUser

myUser.properties.append(props);

}

public string *queryUserProperties(string user){
addProperty(playername, {});
return copy(myUser.properties);

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Content coupling

class A {
int arr[3];

int []get arr() { return arr; }
}

class B {
void myfun(A a) {
int brr[] = a.get arr();

brr[1] = 2;

}
}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Common coupling

class A {
int a;

void f() { print(a); }
void g(int b) { a = 2 * b; }

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Common coupling
class A {

C mydata;

void set data(C data) { mydata = data; }
}
class B {

C mydata;

void set data(C data) { mydata = data; }
}
void setup() {

A a;

B b;

C c;

...

a.set data(c);

b.set data(c);

}
Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Control coupling

void a(boolean flag) {
// do some shared preparation stuff

if (flag) { // do thing 1 }
else { // do thing 2 }

}

void b() {
...

a(true);

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Control coupling

cleanupConnections(boolean force) {
Connection *remainder = new Array();

foreach (Connection c in connections) {
int errcode = c.close();

if (errcode == 1) {
if (force) c.forceClose();

else remainder.add(c);

}
}
connections = remainder;

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Control coupling

bool updateBirth(string user, Date bd, bool verify){
int age = calculateAge(bd, time());

if (verify) {
if (age < 18) {
popup("You are too young to participate!\n");
return false;

}
Account account = loadUser(user);

user.setBirthday(bd);

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Stamp coupling

typedef struct rectangle {
int length, width, area, perimeter, color;

} RECTANGLE;

int calcArea(RECTANGLE r) {
return r.length * r.width;

}

void main() {
RECTANGLE rect;

rect.length = 7;

rect.width = 6;

rect.color = RED;

rect.area = calcArea(rect);

}
Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Stamp coupling

class GameElements {
GameObject *board[WIDTH][HEIGHT];

boolean minesVisible;

int timeOfNextReset();

...

}

class Player {
void init(GameElements ge) {
// find empty place on the board

// and put the player there

}
}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Data coupling

class A {
int k;

void f() {
...

int tmp = Util.sqrt(k);

...

}
}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Data coupling
typedef struct rectangle {
int length, width, area, perimeter, color;

} RECTANGLE;

int calcArea(int length, int width) {
return r.length * r.width;

}

void main() {
RECTANGLE rect;

rect.length = 7;

rect.length = 6;

rect.color = RED;

rect.area = calcArea(rect);

...

}
Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Message coupling

void keyPressed(Key k) {
if (k.isEscapeKey()) {
foreach (KeyListener kl in listeners) {
kl.escapePressed();

}
}

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling

Coupling in object-oriented programming

• inheritance coupling

• interaction coupling

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Cohesion

• strength of inner bonds, relationships

• concept of whether elements belong together or not, measure
of how focused the responsibilities are

• generally: the higher the cohesion within each module, the
looser the coupling between the modules

• high cohesion gives greater reusability and readibility, and
lower complexity
• in an OO setting:

• method cohesion
• class cohesion
• inheritance cohesion

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Class cohesion

• Why different attributes and methods are together

• Do they contribute to supporting exactly one concept?

• Or can the methods be partitioned into groups, each
accessing (almost only) a distinct subset of attributes?

• Splitting could introduce more coupling, but is still preferable.

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Inheritance cohesion

• Why classes are together in a hierachy.

• Main reasons: generalisation-specialisation, code reuse

• Which is the “better” reason?

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Coincidental cohesion

class Utilities {
pretty print(string format, Object[] data) { ... }
int average(int a, int b) { ... }
int maximum(int a, int b) { ... }

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Logical cohesion

module PolygonFunctionality() {
void areaOfTriangle(int a, int b, int c) { ... }
void areaOfRectangle(int a, int b) { ... }
...

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Temporal cohesion

void init() {
count = 0;

open student file();

error = null;

}

void error recovery() {
// close open files

// reset some variables

// restart main loop

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

void tetris block fall(int block id) {
update timer();

move block one down(block id);

if (block has landed(block id)) {
PAUSE(100);

handle landing(block id);

}
}

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Procedural cohesion

void main(string name) {
read data();

read user input();

generate insults();

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Communicational cohesion

void determine customer details(int accountno) {
// do some work to find the name

// do some work to find the loan balance

return name, balance

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Sequential cohesion

void handle record(RECORD record) {
record.user = my user;

record.valid = check(record.user, record.account);

return record;

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Functional cohesion

float calculate sine(int angle) { ... }
RECORD read transaction record(int trans id) { ... }
void assign seat(int user id, int seat id) { ... }

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Agile Software Design

Software Design Early decisions Modular design Agile design

Cohesion

Atomic cohesion

int myfun(x) {
return 5 * x + 3;

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

882 varargs int move with look(mixed dest, string

messin, string messout) {
883 return to default position(1);

884 if ((int)this object()->move(dest, messin,

messout) != MOVE OK)

885 return 0;

886 room look();

887 return to default position(1);

888 return 1;

889 }

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

int room look() {
if (!(interactive(this object())))

return 0;

this object()->ignore from history("look");

this object()->bypass queue();

command("look");

return 1;

}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

The look command:

• calculates the degree of darkness (for visibility)

• checks the lookmap setting for the player

• calls environment(this player())->long lookmap(dark,

lookmap)

• prints the result to the player

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

1594 string long lookmap(int dark, int lookmap type) {
1595 if(dark)

1596 return 0;

1597

1598 return lookmap text(long(dark), lookmap type);

1599 }

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

string lookmap text(string text, int lookmap type) {
string ret = text;

string map = lookmap(this player()->map setting());

send room info(this player(), map);

swwitch(lookmap type) {
case NONE: return text;

case TOP: return map + text;

case LEFT: return combine(map, text);

}
}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

void send room info(object player, string map) {
// send metadata "room.info": room and city name

if (player->map setting() == ASCIIMAP) {
string writmap = lookmap(WRITTENMAP);

player->send metadata("room.map", map);

player->send metadata("room.writmap", writmap);

} else {
string asciimap = lookmap(ASCIIMAP);

player->send metadata("room.map", asciimap);

player->send metadata("room.writtenmap", map);

}
}

Agile Software Design

Software Design Early decisions Modular design Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

• Identify where coupling and cohesion are bad.

• Suggest improvements to the design of the “player enters a
room, is given a room description and metadata” code.

Agile Software Design

Software Design Early decisions Modular design Agile design

Maintaining a lowly coupled, highly cohesive design that
can adapt to change

The key to maximizing reuse lies in anticipating new requirements
and changes to existing requirements, and in designing your

systems so they can evolve accordingly. – Gang of Four

Avoid premature generalisation!

Agile Software Design

Software Design Early decisions Modular design Agile design

Design in eXtreme Programming

When implementing a new feature:

1 write a test

2 write code that satisfies the test

3 look back and realise if a change in design is required

4 refactor

If design documents are required, make them afterwards.

Agile Software Design

Software Design Early decisions Modular design Agile design

Incremental design

During/after implementing, ask questions:

• Is this code similar to other code in the system?

• Are class responsibilities clearly defined?

• Are concepts clearly represented?

• How well does this class interact with other classes?

If there is a problem:

• Jot it down, and finish what you’re doing.

• Discuss with teammates (if needed).

• Follow the ten-minute rule.

Agile Software Design

Software Design Early decisions Modular design Agile design

Incremental design

• The first time you create a design element, be completely
specific.

• The second time you work with an element, make it general
enough to solve both problems.

• The third time, generalise it further.

• By the fourth or fifth time, it’s probably perfect!

Agile Software Design

Software Design Early decisions Modular design Agile design

Incremental design

Agile Software Design

Software Design Early decisions Modular design Agile design

Simplicity in agile design

Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.

– Antoine de Saint-Exupéry

Any intelligent fool can make things bigger, more complex and
more violent. It takes a touch of genius and a lot of courage

to move in the opposite direction.

– Albert Einstein

Keep It Simple, Stupid

– U.S. Navy
Agile Software Design

Software Design Early decisions Modular design Agile design

Simplicity in agile design

Keep It Simple, Stupid

The system should be:

• appropriate for the intended audience

• communicative

• factored

• minimal

Agile Software Design

Software Design Early decisions Modular design Agile design

Design and workflow principles to maintain simplicity

• Principle of Least Astonishment

• You Aren’t Gonna Need It

• Once and Only Once

• Fail Fast

• Self-Documenting Code

• Isolate Third-Party Components

• Limit Published Interfaces

Agile Software Design

Software Design Early decisions Modular design Agile design

Risk-driven design

But I already have a strong suspicion of what I will want to do in
future iterations and I can see that this is going to be a really big

problem. . .

• Remove duplication around the risky code.

• Schedule risky features early on!

Agile Software Design

Software Design Early decisions Modular design Agile design

Agile and incremental design

See also:

• http://www.jamesshore.com/Agile-Book/simple_

design.html

• http://www.jamesshore.com/Agile-Book/incremental_

design.html

Agile Software Design

http://www.jamesshore.com/Agile-Book/simple_design.html
http://www.jamesshore.com/Agile-Book/simple_design.html
http://www.jamesshore.com/Agile-Book/incremental_design.html
http://www.jamesshore.com/Agile-Book/incremental_design.html

Software Design Early decisions Modular design Agile design

Assignment

Tell me, in 300–500 words, what you – personally! – have done to
improve the code quality and testability in your product. (Or to
maintain an existing high standard.)

Deadline: 18 May.

Agile Software Design

