

Principles and Patterns

26 February, 2020

Recap Principles Patterns Inheritance Anti-patterns

Lecture overview

• agile development

• agile design

• principles and patterns

• software testing

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Lecture overview

• agile development

• agile design

• principles and patterns

• software testing

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Recap: agile development

• A mindset:
• Adaptability: be prepared for changing requirements; react to

changes in the world
• Communication: work closely with the client, communicate

in-team all the time
• Respect and responsibility: developers have input on planning

and priorities, but are responsible for their results

• Scrum

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Recap: agile design

• How to write code that supports changing requirements?
• information hiding
• low coupling
• high cohesion

• Incremental design
• avoid premature generalisation
• when a possible improvement presents itself, refactor

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Today: principles and patterns

• Principles: rules you adhere to in your code
• setting rules can be important in team work
• tried and tested principles that help keep coupling low and

cohesion high

• Patterns: standardised solutions
• often recurring problems have standard solutions
• note: some modern languages implement patterns as language

features

• Anti-patterns: bad solutions
• often recurring problems have bad solutions that are often used

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Design and workflow principles to maintain simplicity

• Principle of Least Astonishment

• You Aren’t Gonna Need It

• Once and Only Once

• Fail Fast

• Self-Documenting Code

• Isolate Third-Party Components

• Limit Published Interfaces

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

The SOLID principles

• Single Responsibility Principle

• Open-Closed Principle

• Liskov’s Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Single Responsibility Principle

Every module/class should have responsibility over a single part of
the functionality, and that responsibility should be entirely

encapsulated by the class.

• A module/class should have only one reason to change.

• Bad example: a module that compiles and prints a report.

• Good example: a module that compiles a report.
• Good example: a module that is responsible for arithmetic

reasoning.
• large responsibility, but only one responsibility
• may contain sub-modules for specific sub-responsibilities

• Note: a responsibility should not contain “and”.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

The Open-Closed Principle

Entities should be open for extension, but closed for modification.

• Extension should not involve/require changing existing code.

• Original meaning: use inheritance!

• Meaning changed as programming languages and
methodologies developed.

• Now: code should rely mostly on interfaces and abstract
classes, which are open for extension. Implementations need
not be.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

The Open-Closed Principle
class GraphicEditor {
public void drawShape(Shape s) {

if (s.queryType() == 1) drawRectangle((Rectangle)s);

else if (s.queryType() == 2) drawCircle((Circle)s);

}
public void drawCircle(Circle r) { ... }
public void drawRectangle(Rectangle r) { ... }

}
interface Shape { int queryType(); }
class Rectangle implements Shape {
...

int queryType() { return 1; }
}
class Circle extends Shape {
...

int queryType() { return 2; }
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

The Open-Closed Principle
class GraphicEditor {
public void drawShape(Shape s) {

s.draw(myCanvas); }
}

interface Shape {
public void draw(Canvas canvas);

}

class Rectangle implements Shape {
...

public void draw(Canvas canvas);

}
class Circle implements Shape {
...

public void draw(Canvas canvas);

}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Liskov’s Substitution Principle

(Objects of) sub-classes must be substitutable for (suitable objects
of) their base classes without change in behaviour of the overall

program.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Liskov’s Substitution Principle

Given:
public class Rectangle {

...

public int getHeight() { ... }
public int getWidth() { ... }
public void setHeight(int height) { ... }
public void setWidth(int width) { ... }

}
We might want to have another, more restricted class of squares.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Liskov’s Substitution Principle

How about:
public class Square extends Rectangle {

...

public int getHeight() { ... }
public int getWidth() { ... }
public void setHeight(int height) { // enforce }
public void setWidth(int width) { // enforce }

}
Seems very reasonable relationship, since squares are rectangles.
But violates the principle! Not each Square is-a Rectangle.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Interface Segregation Principle

No client should be forced to depend on methods it does not use.

• Accomplish by splitting large interfaces into role interfaces.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Interface Segregation Principle

public interface Vehicle {
void drive();

void refuel(int amount);

}

public class Car implements Vehicle {
void drive() { ... }
void refuel(int amount) { ... }

}

public class Bike implements Vehicle {
void drive() { ... }
void refuel(int amount) { throw new Exception(); }

}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Dependency Inversion Principle

(A) High-level components should not depend on low-level
components. Both should depend on abstractions.

(B) Abstractions should not depend on details. Details should
depend on abstractions.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Dependency Inversion Principle

(A) High-level components should not depend on low-level
components. Both should depend on abstractions.

(B) Abstractions should not depend on details. Details should
depend on abstractions.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Dependency Inversion Principle

(A) High-level components should not depend on low-level
components. Both should depend on abstractions.

(B) Abstractions should not depend on details. Details should
depend on abstractions.

• Suppose high-level class A depends (via interaction coupling)
on low-level class B.
• If a mechanism in B changes, we should not have to adapt A.
• Instead, we should have made an abstract interface B′ on

which A depends and which B implements.
• In essence, it becomes the role of B′′ to capture the

interaction aspect between A and B.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

The SOLID principles

• Single Responsibility Principle

• Open-Closed Principle

• Liskov’s Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Honourable mention: Law of Demeter

Don’t talk to strangers!

Method f of class A may only talk to:

• A itself

• variables of A

• global variables

• the parameters to f

• any objects created within f

Alternative formulation: use only one dot.
Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Software design pattern

In software engineering, a software design pattern is a general,
reusable solution to a commonly occurring problem within a given
context in software design.

• not code, but rather a kind of template, a standard way of
doing things

• arguably: a missing programming language feature

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Some design patterns

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Some design patterns

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Observer Pattern

class A {
void update() {
...

otherClass1.do thing one();

otherClass2.do thing two();

otherClass3.do thing three();

}
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Observer Pattern

class A {
void notify observers() {
for (int i = 0; i < observers; i++) {
observers[i].eventChangeToA();

}
}
void update() {
...

notify observers();

}
}
class B implements AListener {
void eventChangeToA() { do thing one(); }

}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Decorator pattern

• KeyComponentInterface

• KeyComponent implements KeyComponentInterface
• Decorator implements KeyComponentInterface

• internally keeps an object component of type
KeyComponentInterface

• implements all interface functions by forwarding them to
component

• Extension1(c) inherits Decorator(c), but overrides method x

• Extension2(c) inherits Decorator(c), but overrides methods y,
z

• ConcreteDecorator inherits
Extension1(Extension2(KeyComponent))

• Example: windowing system with configurable borders,
scrollbars

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Example: a simple animation

class AnimObject {
protected:

Position position;

Model *model;

public:

virtual void update() { }
virtual void draw() { // draw model }
virtual void meet(AnimObject other) { }

}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Example: a simple animation

class InvisibleObject : public AnimObject {
public:

void draw() override { }
}
class SolidObject : public AnimObject {

public:

void meet(AnimObject other) {// handle collision}
}
class MovableObject : public AnimObject {
private:

Direction direc;

int speed;

public:

void update() { // update position }
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Example: a simple animation

Challenge: how to get a solid movable block?

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Example: a simple animation

interface AnimatedObject {
void update() { }
void draw() { }
void meet(AnimatedObject other) { }

}

class BoringAnimObject implements AnimatedObject {
public:

void update() { }
void draw() { }
void meet(AnimatedObject other) { }

}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Example: a simple animation

class DecorAnimObject : AnimatedObject {
private:

AnimatedObject core;

public:

DecorAnimObject(AnimatedObject c) { core = c; }
virtual void update() { core.update(); }
virtual void draw() { core.draw(); }
virtual void meet(AnimatedObject other) {

core.meet(other);

}
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Example: a simple animation

class VisibleAnimObject : public DecorAnimObject {
private:

Model* model;

public:

VisibleAnimObject(AnimatedObject c) { super(c); }
void draw() override { // draw model }

}
class SolidAnimObject : public DecorAnimObject {

public:

SolidAnimObject(AnimatedObject c) { super(c); }
void meet(AnimatedObject other) {

// handle collision

}
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Example: a simple animation

Challenge: how to get a solid movable block?

Answer (now): new SolidAnimObject(new
MovableAnimObject(new BoringAnimObject()));

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Exercise: a Pacman game

abstract class GameObject {
private:

Position position;

Model model;

public:

virtual void update() { }
virtual void draw() { // draw model }
virtual void meet(GameObject other) { }

}

Needed objects: Pacman, MeanGhost, EdibleGhost, Obstacle,
Food.

Your task: design a class technology to do this!

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome!

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• hierarchy depth

• the diamond problem

• fragile base classes

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• hierarchy depth

• the diamond problem

• fragile base classes

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Hierarchy depth

Code reuse: I loved that class from my other project! I want to use
it in my new project.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Hierarchy depth

Player

LivingFingerInfoLineEditor HistoryLogger Family

ContainerRaceStats Combatant Caster

Object

SaveableTheftCallback Effect

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

The problem with object-oriented languages is they’ve got all
this implicit environment that they carry around with them.
You wanted a banana but what you got was a gorilla holding

the banana and the entire jungle.

– Joe Armstrong (creator of Erlang)

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

A deep hierarchy?

Player

LivingFingerInfoLineEditor HistoryLogger Family

ContainerRaceStats Combatant Caster

Object

SaveableTheftCallback Effect

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

A deep hierarchy?

Player

LivingFingerInfoLineEditor HistoryLogger Family

ContainerRaceStats Combatant Caster

Object

SaveableTheftCallback Effect

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

A deep hierarchy?

Player

LivingFingerInfoLineEditor HistoryLogger Family

ContainerRaceStats Combatant Caster

Object

SaveableTheftCallback Effect

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

A deep hierarchy?

• replacing inheritance by containment does not fix this
problem: to get the monkey we still need to get the whole
jungle

• however, it keeps the interface cleaner, and thus makes it
much easier to see that we can remove certain parts if we are
not interested in the corresponding behaviour

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• hierarchy depth

• the diamond problem

• fragile base classes

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

The diamond problem

PoweredDevice

Printer Scanner

Copier

void start() { }void start() { }

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

The diamond problem

PoweredDevice

Printer Scanner

Copier

void start() { }void start() { }

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

The diamond problem

PoweredDevice

Printer Scanner

Copier

void start() { }void start() { }

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

The diamond solution

• Just don’t do that.

• Instead, Copier contains an instance of Printer and an
instance of Scanner, and can forward queries (e.g., void
start() { scanner.start(); printer.start(); }).

• Or indeed: use a Decorator!

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

The diamond solution with Decorator Pattern

• interface PoweredDevice { void start(); }
• class BasePoweredDevice { void start() { ... } }
• class Scanner implements PoweredDevice {

PoweredDevice device;

Scanner(PoweredDevice pd) { device = pd; }
void start() {
doScannerStuff(); device.start(); }

}
• class Printer implements PoweredDevice { ... }
• void main() {

PoweredDevice copier = new Scanner

(new Printer(new BasePoweredDevice));

}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• hierarchy depth

• the diamond problem

• fragile base classes

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class Array {
private ArrayList<Object> a =

new ArrayList<Object>();

public void add(Object element) { a.add(element); }
public void addAll(Object elements[]) {
for (int i = 0; i < elements.length; ++i)

a.add(elements[i]);

}
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class ArrayCount extends Array {
private int count;

@override;

public void add(Object element) {
super.add(element);

count++;

}
@override;

public void addAll(Object elements[]) {
super.addAll(elements);

count += elements.length;

}
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class Array {
private ArrayList<Object> a =

new ArrayList<Object>();

public void add(Object element) { a.add(element); }
public void addAll(Object elements[]) {
for (int i = 0; i < elements.length; ++i)

a.add(elements[i]);

}
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class Array {
private ArrayList<Object> a =

new ArrayList<Object>();

public void add(Object element) { a.add(element); }
public void addAll(Object elements[]) {
for (int i = 0; i < elements.length; ++i)

a.add(elements[i]);

}
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class Array {
private ArrayList<Object> a =

new ArrayList<Object>();

public void add(Object element) { a.add(element); }
public void addAll(Object elements[]) {
for (int i = 0; i < elements.length; ++i)

add(elements[i]);

}
}

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

• A possible solution: use a convention to never call public /
non-final methods in the same class unless specifically
indicated.

• Alternative: contain and delegate.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• Emerging trend: use containment and delegation over
inheritance.

• Inherit from interfaces and abstract classes.

• Inherit only for is-a-kind-of relations.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Composition over inheritance.

Composition over inheritance

Because inheritance exposes a subclass to details of its
parent’s implementation, it’s often said that “inheritance

breaks encapsulation”.

– Gang of Four

• Inheritance is white-box reuse, composition is black-box reuse.

• Interfaces offer all the advantages of polymorphism.
(And great flexibility!)

• Delegation is a powerful method, which can often replace
inheritance.

• Annoying in some popular languages. Do it regardless.

• Note: not a blanket “inheritance is bad”!

• Inheritance is important, particularly for specialisation.
• Inheritance is, however, overused.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Composition over inheritance.

Exercise: the Discworld player object

Player

Living

Container

Object Inventory

DimensionsPropertyEnchantment Effect

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Composition over inheritance.

Exercise: the Discworld player object

Player

Living

Container

TangibleObject Inventory

DimensionsPropertyEnchantment Effect

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Composition over inheritance.

Exercise: the Discworld player object

Player

Living

TangibleObject

Container

InanimateObjectInventory

Dimensions Enchantment

Property Effect

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Dependencies

A design is rigid if it cannot be easily changed. Such rigidity is due
to the fact that a single change to heavily interdependent software

begins a cascade of changes in dependent modules. When the
extent of that cascade of change cannot be predicted by the
designers or maintainers the impact of the change cannot be
estimated. This makes the cost of the change impossible to

estimate. Managers, faced with such unpredictability, become
reluctant to authorize changes. Thus the design becomes rigid.

– Robert C. Martin

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Dependencies

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Dependencies

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Dependencies

Why is the new design robust, maintainable, reusable?

=⇒ the targets of the dependencies are stable

• they depend on nothing at all
interface Writer { public void write(char c); }
interface Reader { public char read(); }
• they are (or might be) used by many other classes

Good dependency: a dependency on something very stable!

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Class categories

• Sometimes a number of classes are interdependent.

• Little sense in measuring dependencies between them.
• Classes in a category:

• are closed together against any force of change;
• are reused together;
• share some common function.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Some metrics

For a category C of classes:

• Let Ca be the number of classes outside C that rely on C.

• Let Ce be the number of classes outside C that C relies on.

• The instability of C is
Ce

Ca + Ce

• But: not all classes need to be stable!

• The abstractness of C is

#abstract classes in C

#total classes in C

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Some metrics

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Some metrics

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Some metrics

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Stability and dependency

Some metrics

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Things to watch out for

Code smells and anti-patterns

• Code / design smell: a surface indication that usually
corresponds to a deeper problem in the system

• Anti-pattern: a common response to a recurring problem that
is usually ineffective and potentially counterproductive
(Also applicable outside software itself.)

• Contributes to technical debt.

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Things to watch out for

Code smells and anti-patterns

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Things to watch out for

Design / code smells

• cyclical dependencies

• inappropriate use of inheritance

• data clumps (missing abstraction)

• duplicate code

• unclear naming

• contrived complexity

• God object

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Things to watch out for

Code smells – practical metrics in BetterCodeHub

• Code
• write small units of code (≤ 15 lines per method)
• write simple units of code (≤ 4 branch points per method)
• write code once (≤ 6 lines of copied code)
• keep unit interfaces small (≤ 4 parameters per method)

• Architecture
• separate concerns in modules (≤ 400 lines per module)
• couple components loosely (typically ≤ 10 incoming calls, no

cyclical dependencies)
• keep architecture components balanced (6-12 top-level

components)
• keep your codebase small (≤ 200 000 lines of code)

• Way of Working
• write automated tests that cover all code
• leave your code clean (remove inaccessible code)

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Things to watch out for

Anti-patterns

• yo-yo problem

• coding by exception

• error hiding

• boat anchor

• premature optimisation

• Cargo cult programming

• Yak shaving

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Things to watch out for

Management anti-patterns

• death march: continuing a project that can be easily predicted
to fail

• feature creep: adding more and more features that aren’t
necessary

• ninety-nine rule: underestimating remaining time on an
“almost complete” project

• management by objectives: focusing on metrics rather than
quality

• seagull management: having managers and employees in
contact only when problems arise

Principles and Patterns

Recap Principles Patterns Inheritance Anti-patterns

Things to watch out for

Some sources

• Design Patterns: Elements of Reusable Object-Oriented
Software – Gang of Four

• https://medium.com/@cscalfani/

goodbye-object-oriented-programming-a59cda4c0e53

• https://linux.ime.usp.br/~joaomm/mac499/arquivos/

referencias/oodmetrics.pdf

• https://medium.freecodecamp.org/

the-code-im-still-ashamed-of-e4c021dff55e

Principles and Patterns

https://medium.com/@cscalfani/goodbye-object-oriented-programming-a59cda4c0e53
https://medium.com/@cscalfani/goodbye-object-oriented-programming-a59cda4c0e53
https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://medium.freecodecamp.org/the-code-im-still-ashamed-of-e4c021dff55e
https://medium.freecodecamp.org/the-code-im-still-ashamed-of-e4c021dff55e

	Recap
	Principles
	Patterns
	Inheritance
	Problems with inheritance.
	Composition over inheritance.
	Stability and dependency

	Anti-patterns
	Things to watch out for

