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THISIS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CooL. HOU DO LE.USE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC DR
IF YoU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOUNLOAD A FRESH COPY.
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http://www.xkcd. com
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Why git?

Git helps you to:

® continuously keep backups of your work;
® restore the entire state of your project to a previous version;

® undo specific changes to some files — or even part of files —
without affecting others;

® casily share your progress with other people;

® synchronise your work across multiple devices;

® experiment with a new feature without affecting existing work;
® maintain multiple versions of a product;

® and more!

Introduction to Git



Actions:
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Actions: figure out which files should be on version control
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@ master

s =

Actions: git add *.txt *.java images/ ; git commit
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@ master

=

Actions: replace all occurrences of “magenta” by “pink”
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master
=

&

Actions: git commit -a
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master
=

Actions: add a new source file and change some others
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master
=

Actions: git add newfile.java ; git commit
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master
=

Actions: start working on a new feature
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master
=

X

Actions: realise it was a bad idea
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master
=

Actions: git reset --hard
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master
=

Actions:
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master
=

Actions: update documentation
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master
=

Actions: git commit -a
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master
=

Actions: decide you want to see an earlier version
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master

Actions: git checkout de337dc
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master
=

Actions: git checkout master
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master
=

© X

Actions: realise that the colour change was a bad idea
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master

Actions: git revert de337dc

Introduction to Git




master
_—

Actions: realise that you were drunk during the last two commits
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master
=

o /

Actions: git reset 252137e --hard (be very carefull)
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master

Actions:
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You can also:
® view a graphic description of your commits (like given here)
® ‘“stage” changes gradually
e view files in earlier versions (git show a62c16e:filel.txt)

® recover only a single file (git checkout a62c163 --
filel.txt)

® view differences between a current and prior version of a file

® stage changes gradually
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=

Actions:
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master
=

Actions: start work on the network
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master
=

Actions: git commit -a
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master
=

Actions: decide to work on a high-priority database change
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master

Actions: git checkout -b foo de337dc
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master

Actions: make some changes to the database
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master foo

Actions: git commit -a
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master foo

Actions: complete changes to the database
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Git branches

foo

master ‘

Actions: git commit -a
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foo

master
=

Actions: git checkout master
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foo

master
=

Actions: improve network negotiation

Introduction to Git



master foo
=

Actions: git commit -a
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master foo
=

Actions: fix last of the network bugs
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master
=

! foo

Actions: git commit -a
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master
=

foo

Actions: git merge foo
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master
=

foo

Actions:
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Git branches

Git branches should be seen as a directed acyclic graph!

Introduction to Git



Git branches
Git branches should be seen as a directed acyclic graph!
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® cvery vertex has a unique label
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Git branches
Git branches should be seen as a directed acyclic graph!

foo master

bar

/ bing
® cvery vertex has a unique label
® some vertices are also labeled with a branch name
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Git branches
Git branches should be seen as a directed acyclic graph!

foo master

bar

/ bing
® cvery vertex has a unique label

® some vertices are also labeled with a branch name

® exactly one vertex is active, this is the HEAD
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Git branches
Git branches should be seen as a directed acyclic graph!

foo master

bar

/ bing
® cvery vertex has a unique label
® some vertices are also labeled with a branch name

exactly one vertex is active, this is the HEAD
® commands like show, diff, checkout work with either
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Git branches
Git branches should be seen as a directed acyclic graph!

foo master

bar

/ bing
® cvery vertex has a unique label
® some vertices are also labeled with a branch name
® exactly one vertex is active, this is the HEAD

® commands like show, diff, checkout work with either

® commit and merge add a vertex and advance the branch
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Git branches
Git branches should be seen as a directed acyclic graph!

foo master
bar
. bing
® cvery vertex has a unique label
® some vertices are also labeled with a branch name
® exactly one vertex is active, this is the HEAD

® commands like show, diff, checkout work with either

® commit and merge add a vertex and advance the branch
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Git branches
Git branches should be seen as a directed acyclic graph!

foo master bing
P

bar /
® cvery vertex has a unique label
® some vertices are also labeled with a branch name
® exactly one vertex is active, this is the HEAD

® commands like show, diff, checkout work with either

® commit and merge add a vertex and advance the branch
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Git branches
Git rebase

master foo
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Git branches
Git rebase

foo

master

e
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Git branches
Git rebase

foo

/
master
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Git branches
Git rebase

foo

7
master

Introduction to Git



Git branches
Git rebase

master,foo
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Git rebase
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Git branches

master



Git branches
Git rebase

You can also. ..

® push branches onto the server (git push -u origin
<branchname>)

® view which branches you have, which is active (HEAD), etc.

® keep a branch up-to-date with another without merging (git
rebase master)

® delete whole branches (git branch -d <branchname>)

® change branch names; make another branch master (but be
careful!)
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Remote Git

mast%r

Actions:
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mast%r

Actions:
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Remote Git

)

mast:e>r master

Actions: git push
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Remote Git

mast:e>r

Actions: git pull

)

master

@aster
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Remote Git

)

mast:e; master

@aster

Actions: Martha updates the database handlers.
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Remote Git

@aster

mast%r master

Actions: git commit -a
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Remote Git

mast:e>r

Actions: git push

)

master

@aster
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Remote Git

)

mastg' master

@aster

Actions: git pull
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Remote Git

)

mastgr master

Actions: Martha decides that the colour change was a bad idea.
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Remote Git

mast:e>r

master

Actions: git revert de337dc

s @aster
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Remote Git

)
@aster
|
mast%r master
I
L -

Actions: Harry changes the visualisation module.
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Remote Git

mastg'

Actions: git push

)

master

@aster
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Remote Git

masgg

Actions: git commit -a

master

@aster
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Remote Git

mast:e>r

Actions: git pull

)

master

@aster
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Remote Git

)

master

@aster

Actions: Harry handles the merge conflicts (if necessary).
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Remote Git

mast%r

Actions: git push

)

master

@aster
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Remote Git

master master
=

Actions:
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Remote Git

S
master master
=
© |
~—

Actions: Harry decides to start working on a new feature.
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Remote Git

master DB master
=

Actions: git branch DB
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Remote Git

'SR
master DB master
=
() |
® ~—

Actions: Harry changes the table structure
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Remote Git

master master

Actions: git commit -a
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Remote Git

)
DB master
_—
master 4
4

Actions: Collaborators make their own changes to the project.
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Remote Git

)
DB master
_—
master 4
. 4

Actions: Harry moves database interactions to a separate class
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Remote Git

master

master 4

Actions: git add DBManager.java ; git commit -a
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Remote Git

Y

DB master

master 4

Actions: Collaborators make more changes and ask Harry to look.
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Remote Git

DB master

master 4

=
X"

Actions: git checkout master
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Remote Git

Y
master DB master
=
| ¢&—F—
| /
~

Actions: git pull
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Remote Git

'SR
master DB | master
=
|
| 7
® ~—

Actions: Harry makes a minor update.
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Remote Git

master
=

! DB master

Actions: git commit -a
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Remote Git

0
master master
=
! DB
| —t
| /
—

Actions: git push
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Remote Git

master master

Actions: git checkout DB
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Remote Git

S
master master
DB
<~
|
| /
L ~—

Actions: Harry completes changes to the database.
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Remote Git

master DB | master

Actions: git commit -a
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Remote Git

master DB master
=

Actions: git checkout master
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Remote Git

)
master
=
oy DB master
| 7/
AN —

Actions: git merge DB
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Remote Git

)
master master
=
N DB
| ————
| /
4

Actions: git push
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Remote Git

Try it out!!

® make a local git repository (possibly: one of those you played
with before)

® create an empty repository on github

® push your repository to the server

® make branches and push those to the server, too
® delete branches on the server

® (fork and) clone someone else’s repository

® generate and resolve merge conflicts

® any remaining questions. .. try it yourself :)
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Best practices
Workflow

Bad workflow
master
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Bad workflow
master

Initial commit e
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Best practices
Workflow

Bad workflow
master

Initial commit

First release
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Bad workflow
master

Initial commit ?

First release

New function with bug
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Best practices
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Bad workflow
master

Initial commit ?

First release
New function with bug

Bug fixed

Introduction to Git



Best practices
Workflow

Bad workflow
master

Initial commit ?

First release
New function with bug
Bug fixed

Minor improvement
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Git branches Remote Git Best practices

Workflow

Bad workflow
master

Initial commit

First release

New function with bug

Bug fixed

Minor improvement

Second release
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Best practices
Workflow

Good workflow
master develop feature
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Good workflow
master develop feature

Initial commit e
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Best practices
Workflow

Good workflow
master develop feature

Initial commit

Working version
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Good workflow
master develop feature

Initial commit

Working version

First release
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Good workflow
master develop feature

Initial commit

Working version

First release

New function with bug
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Best practices
Workflow

Good workflow
master develop feature

Initial commit
Working version

First release

New function with bug

Bug fixed
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Best practices
Workflow

Good workflow
master develop feature
Initial commit
Working version
First release
New function with bug
Bug fixed

Update working version
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Best practices
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Good workflow
master develop feature

Initial commit
Working version

First release

New function with bug
Bug fixed

Update working version

Minor improvement
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Best practices
Workflow

Good workflow
master develop feature

Initial commit
Working version
First release
New function with bug
Bug fixed
Update working version

Minor improvement

Second release
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Best practices
Workflow

General advice

® do not mess with remote history!
® use a development branch next to a release branch
® use a separate branch feature/pick-the-name for each feature

e all files in .gitignore will be ignored (e.g., *.sw? for swap
files and *~ for editor backup files)

® keep an eye on the repository structure through git gui (or
an alias)

® cheat sheet: available on Brightspace :)

Introduction to Git



	Why git?
	Local Git
	Git branches
	Git branches should be seen as a directed acyclic graph!
	Git rebase

	Remote Git
	Best practices
	Workflow


