


Introduction to Git

10 September, 2020



THISIS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CooL. HOU DO LE.USE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC DR
IF YoU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOUNLOAD A FRESH COPY.

\
=

http://www.xkcd. com

Introduction to Git


http://www.xkcd.com

Why git?

Introduction to Git



Why git?

Introduction to Git



Why git?

Introduction to Git



Why git?

Introduction to Git



Why git?

XXX

Introduction to Git



Why git?

Introduction to Git



Why git?

Introduction to Git



Why git?

Introduction to Git



XHRHRHRHRHRH)

Introduction to Git



XHIHRHRHRHRH)

Introduction to Git



XHXHEHRHRHRHRH)

Introduction to Git



XHIHEHRHRHRHXHXH)

Introduction to Git



RHRHRHR- - RHDHRHRX)

Introduction to Git



BB B DD

Introduction to Git



Introduction to Git



Introduction to Git



Introduction to Git



Introduction to Git



Introduction to Git



Introduction to Git



Introduction to Git



Introduction to Git



Why git?

Git helps you to:

® continuously keep backups of your work;
® restore the entire state of your project to a previous version;

® undo specific changes to some files — or even part of files —
without affecting others;

® casily share your progress with other people;

® synchronise your work across multiple devices;

® experiment with a new feature without affecting existing work;
® maintain multiple versions of a product;

® and more!

Introduction to Git



Actions:

Introduction to Git



Actions: figure out which files should be on version control

Introduction to Git



@ master

s =

Actions: git add *.txt *.java images/ ; git commit

Introduction to Git



@ master

=

Actions: replace all occurrences of “magenta” by “pink”

Introduction to Git



master
=

&

Actions: git commit -a

Introduction to Git



master
=

Actions: add a new source file and change some others

Introduction to Git



master
=

Actions: git add newfile.java ; git commit

Introduction to Git



master
=

Actions: start working on a new feature

Introduction to Git



master
=

X

Actions: realise it was a bad idea

Introduction to Git



master
=

Actions: git reset --hard

Introduction to Git



master
=

Actions:

Introduction to Git



master
=

Actions: update documentation

Introduction to Git



master
=

Actions: git commit -a

Introduction to Git



master
=

Actions: decide you want to see an earlier version

Introduction to Git



master

Actions: git checkout de337dc

Introduction to Git



master
=

Actions: git checkout master

Introduction to Git



master
=

© X

Actions: realise that the colour change was a bad idea

Introduction to Git



master

Actions: git revert de337dc

Introduction to Git




master
_—

Actions: realise that you were drunk during the last two commits

Introduction to Git



master
=

o /

Actions: git reset 252137e --hard (be very carefull)

Introduction to Git



master

Actions:

Introduction to Git



You can also:
® view a graphic description of your commits (like given here)
® ‘“stage” changes gradually
e view files in earlier versions (git show a62c16e:filel.txt)

® recover only a single file (git checkout a62c163 --
filel.txt)

® view differences between a current and prior version of a file

® stage changes gradually

Introduction to Git



master
=

Actions:

Introduction to Git



master
=

Actions: start work on the network

Introduction to Git



master
=

Actions: git commit -a

Introduction to Git



master
=

Actions: decide to work on a high-priority database change

Introduction to Git



master

Actions: git checkout -b foo de337dc

Introduction to Git



master

Actions: make some changes to the database

Introduction to Git



master foo

Actions: git commit -a

Introduction to Git



master foo

Actions: complete changes to the database

Introduction to Git



Git branches

foo

master ‘

Actions: git commit -a

Introduction to Git



foo

master
=

Actions: git checkout master

Introduction to Git



foo

master
=

Actions: improve network negotiation

Introduction to Git



master foo
=

Actions: git commit -a

Introduction to Git



master foo
=

Actions: fix last of the network bugs

Introduction to Git



master
=

! foo

Actions: git commit -a

Introduction to Git



master
=

foo

Actions: git merge foo

Introduction to Git



master
=

foo

Actions:

Introduction to Git



Git branches

Git branches should be seen as a directed acyclic graph!

Introduction to Git



Git branches
Git branches should be seen as a directed acyclic graph!

_—
\/

® cvery vertex has a unique label

Introduction to Git



Git branches
Git branches should be seen as a directed acyclic graph!

foo master

bar

/ bing
® cvery vertex has a unique label
® some vertices are also labeled with a branch name

Introduction to Git



Git branches
Git branches should be seen as a directed acyclic graph!

foo master

bar

/ bing
® cvery vertex has a unique label

® some vertices are also labeled with a branch name

® exactly one vertex is active, this is the HEAD

Introduction to Git



Git branches
Git branches should be seen as a directed acyclic graph!

foo master

bar

/ bing
® cvery vertex has a unique label
® some vertices are also labeled with a branch name

exactly one vertex is active, this is the HEAD
® commands like show, diff, checkout work with either

Introduction to Git



Git branches
Git branches should be seen as a directed acyclic graph!

foo master

bar

/ bing
® cvery vertex has a unique label
® some vertices are also labeled with a branch name
® exactly one vertex is active, this is the HEAD

® commands like show, diff, checkout work with either

® commit and merge add a vertex and advance the branch

Introduction to Git



Git branches
Git branches should be seen as a directed acyclic graph!

foo master
bar
. bing
® cvery vertex has a unique label
® some vertices are also labeled with a branch name
® exactly one vertex is active, this is the HEAD

® commands like show, diff, checkout work with either

® commit and merge add a vertex and advance the branch

Introduction to Git



Git branches
Git branches should be seen as a directed acyclic graph!

foo master bing
P

bar /
® cvery vertex has a unique label
® some vertices are also labeled with a branch name
® exactly one vertex is active, this is the HEAD

® commands like show, diff, checkout work with either

® commit and merge add a vertex and advance the branch

Introduction to Git



Git branches
Git rebase

master foo

Introduction to Git



Git branches
Git rebase

foo

master

e

Introduction to Git



Git branches
Git rebase

foo

/
master

Introduction to Git



Git branches
Git rebase

foo

7
master

Introduction to Git



Git branches
Git rebase

master,foo

Introduction to Git



Git rebase

Introduction to Git

Git branches

master



Git branches
Git rebase

You can also. ..

® push branches onto the server (git push -u origin
<branchname>)

® view which branches you have, which is active (HEAD), etc.

® keep a branch up-to-date with another without merging (git
rebase master)

® delete whole branches (git branch -d <branchname>)

® change branch names; make another branch master (but be
careful!)

Introduction to Git



Remote Git

mast%r

Actions:

Introduction to Git



Remote Git

mast%r

Actions:

Introduction to Git



Remote Git

)

mast:e>r master

Actions: git push

Introduction to Git



Remote Git

mast:e>r

Actions: git pull

)

master

@aster

Introduction to Git



Remote Git

)

mast:e; master

@aster

Actions: Martha updates the database handlers.

Introduction to Git



Remote Git

@aster

mast%r master

Actions: git commit -a

Introduction to Git



Remote Git

mast:e>r

Actions: git push

)

master

@aster

Introduction to Git



Remote Git

)

mastg' master

@aster

Actions: git pull

Introduction to Git



Remote Git

)

mastgr master

Actions: Martha decides that the colour change was a bad idea.

Introduction to Git



Remote Git

mast:e>r

master

Actions: git revert de337dc

s @aster

Introduction to Git



Remote Git

)
@aster
|
mast%r master
I
L -

Actions: Harry changes the visualisation module.

Introduction to Git



Remote Git

mastg'

Actions: git push

)

master

@aster

Introduction to Git



Remote Git

masgg

Actions: git commit -a

master

@aster

Introduction to Git



Remote Git

mast:e>r

Actions: git pull

)

master

@aster

Introduction to Git



Remote Git

)

master

@aster

Actions: Harry handles the merge conflicts (if necessary).

Introduction to Git



Remote Git

mast%r

Actions: git push

)

master

@aster

Introduction to Git



Remote Git

master master
=

Actions:

Introduction to Git



Remote Git

S
master master
=
© |
~—

Actions: Harry decides to start working on a new feature.

Introduction to Git



Remote Git

master DB master
=

Actions: git branch DB

Introduction to Git



Remote Git

'SR
master DB master
=
() |
® ~—

Actions: Harry changes the table structure

Introduction to Git



Remote Git

master master

Actions: git commit -a

Introduction to Git



Remote Git

)
DB master
_—
master 4
4

Actions: Collaborators make their own changes to the project.

Introduction to Git



Remote Git

)
DB master
_—
master 4
. 4

Actions: Harry moves database interactions to a separate class

Introduction to Git



Remote Git

master

master 4

Actions: git add DBManager.java ; git commit -a

Introduction to Git



Remote Git

Y

DB master

master 4

Actions: Collaborators make more changes and ask Harry to look.

Introduction to Git



Remote Git

DB master

master 4

=
X"

Actions: git checkout master

Introduction to Git



Remote Git

Y
master DB master
=
| ¢&—F—
| /
~

Actions: git pull

Introduction to Git



Remote Git

'SR
master DB | master
=
|
| 7
® ~—

Actions: Harry makes a minor update.

Introduction to Git



Remote Git

master
=

! DB master

Actions: git commit -a

Introduction to Git



Remote Git

0
master master
=
! DB
| —t
| /
—

Actions: git push

Introduction to Git



Remote Git

master master

Actions: git checkout DB

Introduction to Git



Remote Git

S
master master
DB
<~
|
| /
L ~—

Actions: Harry completes changes to the database.

Introduction to Git



Remote Git

master DB | master

Actions: git commit -a

Introduction to Git



Remote Git

master DB master
=

Actions: git checkout master

Introduction to Git



Remote Git

)
master
=
oy DB master
| 7/
AN —

Actions: git merge DB

Introduction to Git



Remote Git

)
master master
=
N DB
| ————
| /
4

Actions: git push

Introduction to Git



Remote Git

Try it out!!

® make a local git repository (possibly: one of those you played
with before)

® create an empty repository on github

® push your repository to the server

® make branches and push those to the server, too
® delete branches on the server

® (fork and) clone someone else’s repository

® generate and resolve merge conflicts

® any remaining questions. .. try it yourself :)

Introduction to Git



Best practices
Workflow

Bad workflow
master

Introduction to Git



Best practices
Workflow

Bad workflow
master

Initial commit e

Introduction to Git



Best practices
Workflow

Bad workflow
master

Initial commit

First release

Introduction to Git



Best practices
Workflow

Bad workflow
master

Initial commit ?

First release

New function with bug

Introduction to Git



Best practices
Workflow

Bad workflow
master

Initial commit ?

First release
New function with bug

Bug fixed

Introduction to Git



Best practices
Workflow

Bad workflow
master

Initial commit ?

First release
New function with bug
Bug fixed

Minor improvement

Introduction to Git



Git branches Remote Git Best practices

Workflow

Bad workflow
master

Initial commit

First release

New function with bug

Bug fixed

Minor improvement

Second release

Introduction to Git



Best practices
Workflow

Good workflow
master develop feature

Introduction to Git



Best practices
Workflow

Good workflow
master develop feature

Initial commit e

Introduction to Git



Best practices
Workflow

Good workflow
master develop feature

Initial commit

Working version

Introduction to Git



Best practices

Workflow

Good workflow
master develop feature

Initial commit

Working version

First release

Introduction to Git



Best practices
Workflow

Good workflow
master develop feature

Initial commit

Working version

First release

New function with bug

Introduction to Git



Best practices
Workflow

Good workflow
master develop feature

Initial commit
Working version

First release

New function with bug

Bug fixed

Introduction to Git



Best practices
Workflow

Good workflow
master develop feature
Initial commit
Working version
First release
New function with bug
Bug fixed

Update working version

Introduction to Git



Best practices
Workflow

Good workflow
master develop feature

Initial commit
Working version

First release

New function with bug
Bug fixed

Update working version

Minor improvement

Introduction to Git



Best practices
Workflow

Good workflow
master develop feature

Initial commit
Working version
First release
New function with bug
Bug fixed
Update working version

Minor improvement

Second release

Introduction to Git



Best practices
Workflow

General advice

® do not mess with remote history!
® use a development branch next to a release branch
® use a separate branch feature/pick-the-name for each feature

e all files in .gitignore will be ignored (e.g., *.sw? for swap
files and *~ for editor backup files)

® keep an eye on the repository structure through git gui (or
an alias)

® cheat sheet: available on Brightspace :)

Introduction to Git



	Why git?
	Local Git
	Git branches
	Git branches should be seen as a directed acyclic graph!
	Git rebase

	Remote Git
	Best practices
	Workflow


