


Principles and Patterns

21 February, 2022



Recap Principles Patterns Testability Inheritance Anti-patterns

Lecture overview

• agile development

• writing maintainable code

• principles and patterns (writing maintainable code part 2)

• software testing

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Recap: writing maintainable code

• How to write code that supports changing requirements?
• low coupling
• high cohesion

• Basic advice to achieve low coupling / high cohesion
• Split long / complex functions
• Do not copy code!
• Avoid circular dependencies in the architecture
• Write automatic unit tests

• Incremental design
• avoid premature generalisation
• when a possible improvement presents itself, refactor

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Today: principles and patterns
• Principles: rules you adhere to in your code

• setting rules can be important in team work
• tried and tested principles that help keep coupling low and

cohesion high
• Patterns: standardised solutions

• often recurring problems have standard solutions
• note: some modern languages implement patterns as language

features
• Testability

• applying principles for high-quality code also makes your code
more testable!

• Inheritance
• inheritance coupling
• how to properly use inheritance

• (If there is time): Code smells and Anti-patterns
• code smell: indication that there is a problem with your code
• anti-pattern: bad solutions for often recurring problems

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

PRINCIPLES

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Recall: simplicity in agile design

Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.

– Antoine de Saint-Exupéry

Any intelligent fool can make things bigger, more complex and
more violent. It takes a touch of genius and a lot of courage

to move in the opposite direction.

– Albert Einstein

Keep It Simple, Stupid

– U.S. Navy

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Design and workflow principles to maintain simplicity

• Principle of Least Astonishment

• You Aren’t Gonna Need It

• Once and Only Once

• Fail Fast

• Limit Published Interfaces

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Design and workflow principles to maintain simplicity

• Principle of Least Astonishment

• You Aren’t Gonna Need It

• Once and Only Once

• Fail Fast

• Limit Published Interfaces

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Design and workflow principles to maintain simplicity

• Principle of Least Astonishment

• You Aren’t Gonna Need It

• Once and Only Once

• Fail Fast

• Limit Published Interfaces

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

You Aren’t Gonna Need It

The key to maximizing reuse lies in anticipating new requirements
and changes to existing requirements, and in designing your

systems so they can evolve accordingly. – Gang of Four

YAGNI

Avoid premature generalisation!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Incremental design

• The first time you create a design element, be completely
specific.

• The second time you work with an element, make it general
enough to solve both problems.

• The third time, generalise it further.

• By the fourth or fifth time, it’s probably perfect!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Design and workflow principles to maintain simplicity

• Principle of Least Astonishment

• You Aren’t Gonna Need It

• Once and Only Once

• Fail Fast

• Limit Published Interfaces

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Once and Only Once (aka: Don’t Repeat Yoursef)

An idea should be expressed only at one place in the code.

• Don’t copy code!

• Non-obvious knowledge should probably be wrapped in an
abstraction.
• Example: int money
• Regular code occurrence: printf(”$%.2f”, money/100.0)
• Better: class Money { int pennies; void print() { . . . } }

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

A conflict: YAGNI versus DRY?
• Scenario: creating game objects with weights stored in units

of 1 gram.
• YAGNI: implement only

• void set weight(int grams)
• int query weight()

• DRY: implement
• void set weight(Weight value)
• Weight query weight

Alternative:
• void set gram weight(int number)
• int query gram weight()
• void copy weight(object other)

• Best practices:
• Do avoid duplicating non-trivial ideas!
• However, don’t introduce abstractions just for the sake of it.
• And definitely do not generalise beyond removing duplication!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Risk-driven design

But I already have a strong suspicion of what I will want to do in
future iterations and I can see that this is going to be a really big

problem. . .

• Remove duplication around the risky code.

• Schedule risky features early on!

Example: I only need RED/GREEN/BLUE/YELLOW now, but
eventually will want colours that depend on user settings.
Bad: class Colour with unused functions setRGB(), setDisplay(),
. . .
Good: class Colour with options for
RED/GREEN/BLUE/YELLOW.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Incremental design

During/after implementing, ask questions:

• Is this code similar to other code in the system?

• Are class responsibilities clearly defined?

• Are concepts clearly represented?

• How well does this class interact with other classes?

If there is a problem:

• Jot it down, and finish what you’re doing.

• Discuss with teammates (if needed).

• Follow the ten-minute rule.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Design and workflow principles to maintain simplicity

• Principle of Least Astonishment

• You Aren’t Gonna Need It

• Once and Only Once

• Fail Fast

• Limit Published Interfaces

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Fail Fast

The system should not fail.
If it does, you should want to know about it!

• Don’t write code to work around systems failing that should
not fail.

• Let the system fail, so the problem is caught during
development or early deployment!

• Disclaimer: the wisdom of this principle depends on the kind
of software. . .

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Design and workflow principles to maintain simplicity

• Principle of Least Astonishment

• You Aren’t Gonna Need It

• Once and Only Once

• Fail Fast

• Limit Published Interfaces

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Some principles to obtain a decoupled, cohesive design

• Single Responsibility Principle

• Dependency Inversion Principle

• Isolate Third-party Components

• Self-Documenting Code

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Some principles to obtain a decoupled, cohesive design

• Single Responsibility Principle

• Dependency Inversion Principle

• Isolate Third-party Components

• Self-Documenting Code

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Single Responsibility Principle

Every module/class should have responsibility over a single part of
the functionality, and that responsibility should be entirely

encapsulated by the class.

• A module/class should have only one reason to change.

• Bad example: a module that compiles and prints a report.

• Good example: a module that compiles a report.
• Good example: a module that is responsible for arithmetic

reasoning.
• large responsibility, but only one responsibility
• may contain sub-modules for specific sub-responsibilities

• Note: a responsibility should not contain “and”.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Some principles to obtain a decoupled, cohesive design

• Single Responsibility Principle

• Dependency Inversion Principle

• Isolate Third-party Components

• Self-Documenting Code

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Dependency Inversion Principle

(A) High-level components should not depend on low-level
components. Both should depend on abstractions.

(B) Abstractions should not depend on details. Details should
depend on abstractions.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Dependency Inversion Principle

(A) High-level components should not depend on low-level
components. Both should depend on abstractions.

(B) Abstractions should not depend on details. Details should
depend on abstractions.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Dependency Inversion Principle

(A) High-level components should not depend on low-level
components. Both should depend on abstractions.

(B) Abstractions should not depend on details. Details should
depend on abstractions.

• Suppose high-level class A depends (via interaction coupling)
on low-level class B.
• If a mechanism in B changes, we should not have to adapt A.
• Instead, we should have made an abstract interface B′ on

which A depends and which B implements.
• In essence, it becomes the role of B′′ to capture the

interaction aspect between A and B.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Some principles to obtain a decoupled, cohesive design

• Single Responsibility Principle

• Dependency Inversion Principle

• Isolate Third-party Components

• Self-Documenting Code

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Isolate Third-party Components

A hidden source of duplication lies in calls to third-party
components. When you have these calls spread throughout your
code, replacing or augmenting that component becomes difficult.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Isolate Third-party Components

A hidden source of duplication lies in calls to third-party
components. When you have these calls spread throughout your
code, replacing or augmenting that component becomes difficult.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Some principles to obtain a decoupled, cohesive design

• Single Responsibility Principle

• Dependency Inversion Principle

• Isolate Third-party Components

• Self-Documenting Code

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Self-Documenting Code
PConstant InputReaderAFSM :: read constant(string description) {

// start: do we have a colon, to separate name and type?

int colon = description.find(’:’);

if (colon == string::npos) {
last warning = "missing colon.";

return NULL;

}
// is the thing before the colon a single word and legal name?

string name = description.substr(0,colon);

while (name.length() > 0 && name[0] == ’ ’) name = name.substr(1);

while (name.length() > 0 && name[name.length()-1] == ’ ’)

name = name.substr(0,name.length()-1);

if (name.length() == 0) {
last warning= "missing constant name.";

return NULL;

}
for (int i = 0; i < name.length(); i++) {

if (!generic character(name[i])) {
last warning= "illegal characters in " + name + ".";

return NULL;

}
}
// is the thing after it a legal type?

string typetxt = description.substr(colon+1);

PType type = TYPE(typetxt);

if (type == NULL) {
last warning = "could not read type: " + last warning;

return NULL;

}
return new Constant(name, type);

}
Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles to maintain simplicity

Self-Documenting Code

PConstant InputReaderAFSM :: read constant(string description) {
int separator position = find separator(description, ’:’);

string name = readLegalName(description.substr(0, separator position));

if (name == "") return NULL;

PType type = readValidType(description.substr(separator position+1));

if (type == NULL) return NULL;

return new Constant(name, type);

}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

PATTERNS

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Software design pattern

In software engineering, a software design pattern is a general,
reusable solution to a commonly occurring problem within a given
context in software design.

• not code, but rather a kind of template, a standard way of
doing things

• arguably: a missing programming language feature

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Observer Pattern

class A {
void update() {
...

otherClass1.do thing one();

otherClass2.do thing two();

otherClass3.do thing three();

}
}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Observer Pattern

class A {
void notify observers() {
for (int i = 0; i < observers; i++) {
observers[i].eventChangeToA();

}
}
void update() {
...

notify observers();

}
}
class B implements AListener {
void eventChangeToA() { do thing one(); }

}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Related: event-driven architecture pattern

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Some design patterns

• Adapter pattern: use a wrapper to convert the interface of a
class without modifying its source code
• Facade pattern: tidy up the interfaces to a number of related

objects that have often been developed incrementally
• Closely related: isolate third-party components!

• Observer pattern: tell several objects that the state of some
other object has changed

• Decorator pattern: allow for the possibility of extending the
functionality of an existing class at runtime

• . . .

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Decorator pattern

• KeyComponentInterface

• KeyComponent implements KeyComponentInterface
• Decorator implements KeyComponentInterface

• internally keeps an object component of type
KeyComponentInterface

• implements all interface functions by forwarding them to
component

• Extension1(c) inherits Decorator, but overrides method x

• Extension2(c) inherits Decorator, but overrides methods y, z

• ConcreteDecorator inherits
Extension1(Extension2(KeyComponent))

• Example: windowing system with configurable borders,
scrollbars

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Example: a simple animation
class AnimatedObject {
protected:

Position position;

Model *model;

public:

virtual void update() { Jupdate locationK }
virtual void draw() { Jdraw modelK }
virtual void meet(AnimatedObject other) {

Jhandle collisionK
}

}
Different options! (8 combinations)

• visible or invisible (difference in draw)

• moving or static blocks (difference in update)

• solid or immaterial (difference in meet)

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Example: a simple animation

interface AnimatedObject {
void update() { }
void draw() { }
void meet(AnimatedObject other) { }

}

class BoringAnimObject implements AnimatedObject {
public:

void update() { }
void draw() { }
void meet(AnimatedObject other) { }

}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Example: a simple animation

class DecorAnimObject : AnimatedObject {
private:

AnimatedObject core;

public:

DecorAnimObject(AnimatedObject c) { core = c; }
virtual void update() { core.update(); }
virtual void draw() { core.draw(); }
virtual void meet(AnimatedObject other) {

core.meet(other);

}
}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Example: a simple animation

class VisibleAnimObject : public DecorAnimObject {
private:

Model* model;

public:

VisibleAnimObject(AnimatedObject c) { super(c); }
void draw() override { Jdraw modelK }

}
class SolidAnimObject : public DecorAnimObject {

public:

SolidAnimObject(AnimatedObject c) { super(c); }
void meet(AnimatedObject other) {

Jhandle collisionK
}

}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Example: a simple animation

Challenge: how to get a solid movable block?

Answer: new SolidAnimObject(new MovableAnimObject(new
BoringAnimObject()));

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Exercise: a Pacman game

abstract class GameObject {
private:

Position position;

Model model;

public:

virtual void update() { }
virtual void draw() { // draw model }
virtual void meet(GameObject other) { }

}

Needed objects: Pacman, MeanGhost, EdibleGhost, Obstacle,
Food.

Your task: design a class technology to do this!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

A recurring theme

A powerful technique for maintainable code is using abstractions:

• use abstractions to avoid duplicating ideas (e.g., class Weight)

• use an abstraction to isolate third-party functionality

• when interacting with distant code, use an abstraction instead

• abstractions play a critical role in several patterns

Modern languages typically have interfaces or abstract classes.
Even if not: most of this can be done through functions.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Testability

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles, Patterns and Testability

Observation: code with loose coupling and high cohesion is easier
to unit test!

• Single Responsibility Principle

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

The Single Responsibility Principle and Testability

string lookmap text(string text, int lookmap type) {
string ret = text;

string map = lookmap(this player()->map setting());

send room info(this player(), map);

swwitch(lookmap type) {
case NONE: return text;

case TOP: return map + text;

case LEFT: return combine(map, text);

}
}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

The Single Responsibility Principle and Testability
PConstant InputReaderAFSM :: read constant(string description) {

// start: do we have a colon, to separate name and type?

int colon = description.find(’:’);

if (colon == string::npos) {
last warning = "missing colon.";

return NULL;

}
// is the thing before the colon a single word and legal name?

string name = description.substr(0,colon);

while (name.length() > 0 && name[0] == ’ ’) name = name.substr(1);

while (name.length() > 0 && name[name.length()-1] == ’ ’)

name = name.substr(0,name.length()-1);

if (name.length() == 0) {
last warning= "missing constant name.";

return NULL;

}
for (int i = 0; i < name.length(); i++) {

if (!generic character(name[i])) {
last warning= "illegal characters in " + name + ".";

return NULL;

}
}
// is the thing after it a legal type?

string typetxt = description.substr(colon+1);

PType type = TYPE(typetxt);

if (type == NULL) {
last warning = "could not read type: " + last warning;

return NULL;

}
return new Constant(name, type);

}
Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles, Patterns and Testability

Observation: code with loose coupling and high cohesion is easier
to unit test!

• Single Responsibility Principle

• Isolate Third-party Components

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Isolating third-party components for testability

Hard to test:
Scheduler

external
SAT solver

write file read file

SAT facade

call return

write file read file

⇐= manually run test

⇐= test automatically in isolation

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Isolating third-party components for testability

Easier to test:
Scheduler

external
SAT solver

SAT facade

call return

write file read file

⇐= manually run test

⇐= test automatically in isolation

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Isolating third-party components for testability

Easier to test:
Scheduler

external
SAT solver

SAT facade

call return

write file read file

⇐= manually run test

⇐= test automatically in isolation

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Isolating third-party components for testability

Easier to test:
Scheduler

external
SAT solver

SAT facade

call return

write file read file

⇐= manually run test

⇐= test automatically in isolation

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Isolating third-party components for testability

Easier to test:
Scheduler

external
SAT solver

Test Sat facade

call return

write file read file

⇐= manually run test

⇐= test automatically in isolation

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Testing using fake objects
class TestSatSolver implements SatSolver {
ArrayList<String> reqs;

TestSatSolver() { reqs = new ArrayList<String>(); }
public void addClause(Clause clause) {
reqs.add(clause.toString());

}
public Solution solve() {
return new Solution(false);

}
}

@Test

public void testSimpleSchedule() {
TestSatSolver solver = new TestSatSolver();

Scheduler scheduler = new Scheduler(solver);

...

}
Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Principles, Patterns and Testability

Observation: code with loose coupling and high cohesion is easier
to unit test!

• Single Responsibility Principle

• Isolate Third-party Components

• Dependency Inversion Principle

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Testability by depending on abstractions

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Testability by depending on abstractions

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

The input window:

• It should mostly act like a normal GUI component (left and
right arrow keys, entering commands, selecting, etc.).

• When return is pressed, the current text should be sent, and
selected (for easy deleting).

• The up and down arrow keys browse through the “history” of
previously sent lines.

• When new text is sent, it is put at the bottom of the history,
and this position is selected.

• When browsing history, any change also causes the history
position to go to the bottom.

• (Perhaps some more requirements.)

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Naive implementation:

• Put it all in one class “input window”.

Better implementation:

• Separate the history! This is a component with its own
responsibility.

Best implementation:

• Also separate the actual GUI component!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Naive implementation:

• Put it all in one class “input window”.

Better implementation:

• Separate the history! This is a component with its own
responsibility.

Best implementation:

• Also separate the actual GUI component!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Naive implementation:

• Put it all in one class “input window”.

Better implementation:

• Separate the history! This is a component with its own
responsibility.

Best implementation:

• Also separate the actual GUI component!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Naive implementation:

• Put it all in one class “input window”.

Better implementation:

• Separate the history! This is a component with its own
responsibility.

Best implementation:

• Also separate the actual GUI component!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Naive implementation:

• Put it all in one class “input window”.

Better implementation:

• Separate the history! This is a component with its own
responsibility.

Best implementation:

• Also separate the actual GUI component!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Note:

• The InputHistory is a basic class with a single responsibility
and no dependencies. It is easy to test automatically.

• The InputWindow is a manager class. It is the only one of the
three classes that interacts with the outside world (e.g., giving
events when return is pressed).

• The InputWindow can be tested without the InputHistory and
InputWindowTextField by replacing these two by fake, stub or
mock objects. For example: call
InputWindow.specialKeyEvent to indicate that return was
pressed, and test whether it sends the text in the textfield
stub on the event bus and passes it into the history spy.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Class exercise: designing testable code

Note:

• The InputWindowTextField is hard to test. Depending on your
test framework, this may require manual testing. This can still
be done systematically: define manual tests, and agree that
they are executed whenever someone changes the component.

• The InputWindowTextField is a very small class, which inherits
the relevant GUI component, can be questioned for active
text, and passes on requested key events. Because it is so
small, it will rarely need changing, and only minimal testing.

• The InputWindowTextField does not know about the
InputHistory: it is simply given an object to which it must pass
special key events and componentChanged() notifications.
This makes it easier to systematically test it in isolation.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Inheritance

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• hierarchy depth

• the diamond problem

• fragile base classes

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• hierarchy depth

• the diamond problem

• fragile base classes

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Hierarchy depth

Code reuse: I loved that class from my other project! I want to use
it in my new project.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Hierarchy depth

Player

LivingFingerInfoLineEditor HistoryLogger Family

ContainerRaceStats Combatant Caster

Object

SaveableTheftCallback Effect

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

The problem with object-oriented languages is they’ve got all
this implicit environment that they carry around with them.
You wanted a banana but what you got was a gorilla holding

the banana and the entire jungle.

– Joe Armstrong (creator of Erlang)

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

A deep hierarchy?

Player

LivingFingerInfoLineEditor HistoryLogger Family

ContainerRaceStats Combatant Caster

Object

SaveableTheftCallback Effect

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

A deep hierarchy?

Player

LivingFingerInfoLineEditor HistoryLogger Family

ContainerRaceStats Combatant Caster

Object

SaveableTheftCallback Effect

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

A deep hierarchy?

Player

LivingFingerInfoLineEditor HistoryLogger Family

ContainerRaceStats Combatant Caster

Object

SaveableTheftCallback Effect

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

A deep hierarchy?

• replacing inheritance by containment does not fix this
problem: to get the monkey we still need to get the whole
jungle

• however, it keeps the interface cleaner, and thus makes it
much easier to see that we can remove certain parts if we are
not interested in the corresponding behaviour

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• hierarchy depth

• the diamond problem

• fragile base classes

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

The diamond problem

PoweredDevice

Printer Scanner

Copier

void start() { }void start() { }

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

The diamond problem

PoweredDevice

Printer Scanner

Copier

void start() { }void start() { }

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

The diamond problem

PoweredDevice

Printer Scanner

Copier

void start() { }void start() { }

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

The diamond solution

• Just don’t do that.

• Instead, Copier contains an instance of Printer and an
instance of Scanner, and can forward queries (e.g., void
start() { scanner.start(); printer.start(); }).

• Or indeed: use a Decorator!

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

The diamond solution with Decorator Pattern

• interface PoweredDevice { void start(); }
• class BasePoweredDevice { void start() { ... } }
• class Scanner implements PoweredDevice {

PoweredDevice device;

Scanner(PoweredDevice pd) { device = pd; }
void start() {
doScannerStuff(); device.start(); }

}
• class Printer implements PoweredDevice { ... }
• void main() {

PoweredDevice copier = new Scanner

(new Printer(new BasePoweredDevice));

}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• hierarchy depth

• the diamond problem

• fragile base classes

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class Array {
private ArrayList<Object> a =

new ArrayList<Object>();

public void add(Object element) { a.add(element); }
public void addAll(Object elements[]) {
for (int i = 0; i < elements.length; ++i)

a.add(elements[i]);

}
}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class ArrayCount extends Array {
private int count;

@override;

public void add(Object element) {
super.add(element);

count++;

}
@override;

public void addAll(Object elements[]) {
super.addAll(elements);

count += elements.length;

}
}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class Array {
private ArrayList<Object> a =

new ArrayList<Object>();

public void add(Object element) { a.add(element); }
public void addAll(Object elements[]) {
for (int i = 0; i < elements.length; ++i)

a.add(elements[i]);

}
}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class Array {
private ArrayList<Object> a =

new ArrayList<Object>();

public void add(Object element) { a.add(element); }
public void addAll(Object elements[]) {
for (int i = 0; i < elements.length; ++i)

a.add(elements[i]);

}
}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

public class Array {
private ArrayList<Object> a =

new ArrayList<Object>();

public void add(Object element) { a.add(element); }
public void addAll(Object elements[]) {
for (int i = 0; i < elements.length; ++i)

add(elements[i]);

}
}

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Fragile base classes

• A possible solution: use a convention to never call public /
non-final methods in the same class unless specifically
indicated.

• Alternative: contain and delegate.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Problems with inheritance.

Inheritance. . . awesome?

• Emerging trend: use containment and delegation over
inheritance.

• Inherit from interfaces and abstract classes.

• Inherit only for is-a-kind-of relations.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Composition over inheritance.

Composition over inheritance

Because inheritance exposes a subclass to details of its
parent’s implementation, it’s often said that “inheritance

breaks encapsulation”.

– Gang of Four

• Inheritance is white-box reuse, composition is black-box reuse.

• Interfaces offer all the advantages of polymorphism.
(And great flexibility!)

• Delegation is a powerful method, which can often replace
inheritance.

• Annoying in some popular languages. Do it regardless.

• Note: not a blanket “inheritance is bad”!

• Inheritance is important, particularly for specialisation.
• Inheritance is, however, overused.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Composition over inheritance.

Exercise: the Discworld player object

Player

Living

Container

Object Inventory

DimensionsPropertyEnchantment Effect

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Composition over inheritance.

Exercise: the Discworld player object

Player

Living

Container

TangibleObject Inventory

DimensionsPropertyEnchantment Effect

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Composition over inheritance.

Exercise: the Discworld player object

Player

Living

TangibleObject

Container

InanimateObjectInventory

Dimensions Enchantment

Property Effect

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Composition over inheritance.

Liskov’s Substitution Principle

(Objects of) sub-classes must be substitutable for (suitable objects
of) their base classes without change in behaviour of the overall

program.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Composition over inheritance.

Liskov’s Substitution Principle

Given:
public class Rectangle {

...

public int getHeight() { ... }
public int getWidth() { ... }
public void setHeight(int height) { ... }
public void setWidth(int width) { ... }

}
We might want to have another, more restricted class of squares.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Composition over inheritance.

Liskov’s Substitution Principle

How about:
public class Square extends Rectangle {

...

public int getHeight() { ... }
public int getWidth() { ... }
public void setHeight(int height) { JenforceK }
public void setWidth(int width) { JenforceK }

}
Seems very reasonable relationship, since squares are rectangles.
But violates the principle! Not each Square is-a Rectangle.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Smells and Anti-patterns

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Things to watch out for

Code smells and anti-patterns

• Code / design smell: a surface indication that usually
corresponds to a deeper problem in the system

• Anti-pattern: a common response to a recurring problem that
is usually ineffective and potentially counterproductive
(Also applicable outside software itself.)

• Contributes to technical debt.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Things to watch out for

Design / code smells

• cyclical dependencies

• inappropriate use of inheritance

• data clumps (missing abstraction)

• duplicate code

• unclear naming

• contrived complexity

• God object

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Things to watch out for

Boy Scout Rule

Leave the campground cleaner than you found it.

• Leave no unit level code smells behind.

• Leave no bad comments behind.

• Leave no code in comments behind.

• Leave no dead code behind.

• Leave no long identifier names behind.

• Leave no magic constants behind.

• Leave no badly handled exceptions behind.

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Things to watch out for

Anti-patterns

• yo-yo problem

• coding by exception

• error hiding

• boat anchor

• premature optimisation

• Cargo cult programming

• Yak shaving

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Things to watch out for

Management anti-patterns

• death march: continuing a project that can be easily predicted
to fail

• feature creep: adding more and more features that aren’t
necessary

• ninety-nine rule: underestimating remaining time on an
“almost complete” project

• management by objectives: focusing on metrics rather than
quality

• seagull management: having managers and employees in
contact only when problems arise

Principles and Patterns



Recap Principles Patterns Testability Inheritance Anti-patterns

Things to watch out for

Some sources

• Design Patterns: Elements of Reusable Object-Oriented
Software – Gang of Four

• https://medium.com/@cscalfani/

goodbye-object-oriented-programming-a59cda4c0e53

• https://linux.ime.usp.br/~joaomm/mac499/arquivos/

referencias/oodmetrics.pdf

• https://medium.freecodecamp.org/

the-code-im-still-ashamed-of-e4c021dff55e

Principles and Patterns

https://medium.com/@cscalfani/goodbye-object-oriented-programming-a59cda4c0e53
https://medium.com/@cscalfani/goodbye-object-oriented-programming-a59cda4c0e53
https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://medium.freecodecamp.org/the-code-im-still-ashamed-of-e4c021dff55e
https://medium.freecodecamp.org/the-code-im-still-ashamed-of-e4c021dff55e

	Recap
	Principles
	Principles to maintain simplicity

	Patterns
	Testability
	Inheritance
	Problems with inheritance.
	Composition over inheritance.

	Anti-patterns
	Things to watch out for


