
Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Software testing

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Programmers! Cast out your guilt! Spend half your time in joyous
testing and debugging! Stalk bugs with care, methodology, and
reason. Build traps for them. Be more artful than those devious

bugs and taste the joys of guiltless programming!

– Boris Beizer

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Testing maturity (Beizer 1990)

1 testing is just for debugging

2 testing is to show correctness of the product

3 testing is to show incorrectness of the product

4 testing is to reduce risk

5 testing is a mental discipline to develop better software

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Kinds of testing

• Functional

• Non-functional

• Maintenance

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Terminology

Functional testing – terminology

What is it we are looking for?
Bugs, faults, errors, failures?

• Fault: a static defect

• Error: an incorrect state: the manifestation of some fault

• Failure: an incorrect behaviour

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Terminology

Terminology

public static int numZero(int[] x) {
int count = 0;

for (int i = 1; i < x.length; i++) {
if (x[i] == 0) count++;

}
return count;

}
• Fault: int i = 1 instead of int i = 0

• Error: program state before the first loop check

• Failure: wrong result for input x = {0, 7, 2}

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Terminology

The RIPR model

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Terminology

The RIPR model

Four conditions necessary for a failure to be observed:

• Reachability: the location(s) in the program that contain the
fault must be reached.

• Infection: the state of the program must be incorrect.

• Propagation: the infected state must cause some output or
final part of the program to be incorrect.

• Reveal: the tester must observe part of the incorrect portion
of the program state.

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Traditional testing levels

• unit testing (or intra-method)

• module testing (or inter-method, intra-class)

• integration testing (or inter-class)

• system testing

• acceptance testing

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

The V-model

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Unit and module testing

Testing correctness of individual units of code.

Manual:
void test validation() {
do {
string num = input("Type account number: ");

println("Result: " + validate account(num));

}
}

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Unit and module testing

Testing correctness of individual units of code.

Automatic:

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Unit and module testing

• goal: verify the internal logic of the code by testing every
possible branch (aka test coverage)

• static unit testing: code review for all possible behaviours

• dynamic unit testing: program unit is executed and its
outcomes observed, or compared to expected outcomes

• can be done both manually and automatically, white-box and
black box

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Integration testing

Verifying that different software modules work in unity.

• focuses on interactions and data flow between modules

• done before, during and after integration of a new module
into the main software package

• input: unit-tested modules or stubs / mock objects.

• modules are put together in an incremental manner

• additional modules should work without disturbing existing
functionality

• can be done both manually and automatically, white box and
black box (but typically black box)

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Integration testing

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Kinds of integration testing

• Big Bang – integrate and test all components at once.

• Bottom Up – combine low-level modules first.

• Top Down – combine high-level modules first.

• Sandwich – a combination of the above.

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

System testing

Testing documented requirements of the fully integrated software.

• black box testing, typically done by a professional testing
agent
• includes both functional and non-functional testing

• Smoke testing – does the absolute core functionality work?
• Functionality testing – does it do what it should?
• Robustness – does it recover well from input errors or failures?
• Stress – what are the limitations / how does it deal with them?
• Performance – does it respond quickly / use low resources?
• Scalability – can it be used on a large scale?
• Stability – does it keep running under full load?
• Regression – does everything still work after maintenance?

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Acceptance testing (or: beta-testing)

Testing usability by actual users.

• should be undertaken by a subject matter expert

• typically done by the customer or end-users

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Designing automated tests

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Automated unit testing

• automatically test a single unit of code

• tests are designed to be repeatable

• testing outside the usual call chain exposes dependencies

• should contain both positive and negative outcomes

• can be done early in development

• typically done as white-box testing, but also black-box

• to test units, use mock objects, method stubs

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Test doubles

Mocking, stubbing, etc.

• Fake objects – working objects, but which take shortcuts

• Stubs – objects providing fixed answers
int get random number() { return 42; }
• Spies – stubs that record some information
void send mail() { sent++; }
• Mocks – objects preprogrammed with expectations

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Test doubles

Mocking, stubbing, etc.

Cook ⇐= Waiter ⇐= CustomerTest driver

• Fake cook: supplies frozen dinners with the right name

• Stub cook: always gives a hotdog

• Spy cook: always gives a hotdog, but remembers what was
actually asked

• Mock cook: is told by the test driver to expect a hamburger
request and given a hamburger to return, and will start
screaming if asked for a hot dog

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

General advice

Side benefits of automated unit testing

• forces you to consider edge cases and error handling early on

• pushes you to have a decoupled and cohesive design

• decreases the barrier to refactoring code

• provides a kind of living documentation for the system

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

General advice

Unit testing advice

• clear descriptive names of test functions

• clear failure description on asserts
assertEquals("adding one day to 2050/2/15",

expected, actual);

• when appropriate, use a timeout
@Test(timeout = 5000)

• test one thing at a time per method (preferably: one assert)
(use @Before and @After for setup and teardown functions)

• tests should avoid logic (minimise if/else, loops, try/catch)

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

General advice

Unit tests – things to think about

• What is wrong – the thing that is tested, or the test?

• Does not show absence of errors, only particular errors.

• If the same person writes the test and the code, both may
have the same problem.

• The longer a unit test exists, the greater the chance that it is
not representative.

• Maintain unit tests as a first-class part of the code.

• May seem to take a lot of time, but actually saves time.

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

General advice

Unit tests – things to think about

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

General advice

Manual versus automatic testing

• manual testing is time and cost consuming, especially with
repetition

• prone to human error (but: this works both ways)

• manual testing will capture problems that are hard to find
automatically

• of course: both needed

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Recall: software design principles

• Single Responsibility Principle

• Open-Closed Principle

• Dependency Inversion Principle

• Isolate Third-Party Components

Satisfying these principles makes the code more testable! Both
because it allows units to be tested separately (and without
unnecessary side effects), and because good use of principles makes
it easier to mock certain objects like low-level classes or third-party
components.

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Class exercise: designing testable code

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Class exercise: designing testable code

The input window:

• It should mostly act like a normal GUI component (left and
right arrow keys, entering commands, selecting, etc.).

• When return is pressed, the current text should be sent, and
selected (for easy deleting).

• The up and down arrow keys browse through the “history” of
previously sent lines.

• When new text is sent, it is put at the bottom of the history,
and this position is selected.

• When browsing history, any change also causes the history
position to go to the bottom.

• (Perhaps some more requirements.)

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Class exercise: designing testable code

Naive implementation:

• Put it all in one class “input window”.

Better implementation:

• Separate the history! This is a component with its own
responsibility.

Best implementation:

• Also separate the actual GUI component!

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Class exercise: designing testable code

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Class exercise: designing testable code

Note:

• The InputHistory is a basic class with a single responsibility
and no dependencies. It is easy to test automatically.

• The InputWindow is a manager class. It is the only one of the
three classes that interacts with the outside world (e.g., giving
events when return is pressed).

• The InputWindow can be tested without the InputHistory and
InputWindowTextField by replacing these two by fake, stub or
mock objects. For example: call
InputWindow.specialKeyEvent to indicate that return was
pressed, and test whether it sends the text in the textfield
stub on the event bus and passes it into the history spy.

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Class exercise: designing testable code

Note:

• The InputWindowTextField is hard to test. Depending on your
test framework, this may require manual testing. This can still
be done systematically: define manual tests, and agree that
they are executed whenever someone changes the component.

• The InputWindowTextField is a very small class, which inherits
the relevant GUI component, can be questioned for active
text, and passes on requested key events. Because it is so
small, it will rarely need changing, and only minimal testing.

• The InputWindowTextField does not know about the
InputHistory: it is simply given an object to which it must pass
special key events and componentChanged() notifications.
This makes it easier to systematically test it in isolation.

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Some Considerations

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

TDD

Test-Driven Development

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

TDD

Principles of TDD

• always write the test before the code

• write the simplest code that works

• not just unit tests; also have tests based on user stories
(ATDD)

• works well with specification by example

• minimise code in hard-to-test modules

• best used from the start
(but boy scout rule)

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Mutation testing

Recall: the RIPR model

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Mutation testing

Mutation testing: considering the P in RIPR

Basic idea:

• A program is changed at exactly one place, in a small way.

• The test set is run to see whether it outlaws this mutant.

• If so, the mutant is called killed.

• The aim is to kill as many mutants as possible.

• The killing score is perceived as a goodness measure for the
test set.

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Testing roles

Erroneous perception

“I’ll just find the bugs by running the client program.”

Too often:

• testing is seen as a novice’s job

• testing is assigned to the least experienced team member

• testing is done as an afterthought (or not at all)

Definition of done: includes testing!

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Testing roles

Tasks in testing:

• test design
• criteria-based
• human-based

• test automation

• test execution

• test evaluation

Each type of activity requires different skills, background,
knowledge, education and training!

Software Testing



Introduction Testing levels Automated testing Principles and testability Coverage Criteria Points for thought

Principles

Principles of testing

• Exhaustive testing is not possible.
(So you’ll have to do risk assessment and try to find a
representative sample of test cases.)

• Defect clustering: 80% of the problems in 20% of the
modules.

• Pesticide paradox: review test cases occasionally.

• Testing shows presence, not absence of defects.

• Absence of error does not imply usability!

• Test early, test often.

Software Testing



Continuous Integration

By Joren Vrancken



Manual workflow

My idea PR Review 
by peer

Manual
testing*

Manual
testing*

Code 
review

masterCommits

*manually testing changes and manually running unit/integration/etc tests.



What Can Go Wrong?

My idea PR Review 
by peer

Manual
testing*

Manual
testing*

Code 
review

masterCommits

*manually testing changes and manually running unit/integration/etc tests.



The human error in manual workflow

PR Review 
by peer

Manual
testing

Code 
review

master
● Every change needs manual checking

○ Codestyle mistakes are easily overlooked

● No consistency in what is tested
○ Easy to forget something
○ Different views between reviewers
○ “This is so simple, I don’t have to test it”

● No consistency in how a change is tested
○ Different operating systems, laptops, etc. etc.



Continuous Integration

Automated tasks on your codebase that run under certain conditions.



Goals of CI

● Automate running the boring/tedious/time consuming parts of a review
● Consistency in what is tested
● Consistency in test environment

○ Similar to the production environment



What to automate using CI?

● Running integration/unit tests
● Linting
● Checking whether documentation is up to date
● Checking for visual changes
● Whatever you want



Continuous Integration Workflow

My idea PR Review 
by peer

Manual
testing

Manual
testing

Code 
review

masterCommits CI

Testing



CI Pipeline

1. Pineline: Ordered stages
2. Stage: One or more jobs
3. Jobs: Ordered steps to reach a goal

Linting 

Check documentation

Unit tests

Integration tests

Build Docker image

Check translations

Static Checks Test Build



Continuous Deployment 

● Deploy software using CI
● Automate building
● Automate deployment

○ Under specific conditions (e.g. only on the master branch)



GitHub Actions

● GitHubs own built-in CI platform
● Released last November and perceived as a development “game changer”
● More than CI

○ Distributable
○ Define steps using Unix commands, Javascript or Docker images
○ Execute jobs on events (e.g. starring, first contributor)



My first GitHub Actions Workflow

Demonstration



GitHub Actions Documentation

https://help.github.com/en/actions


	Introduction
	Terminology

	Testing levels
	Automated testing
	Test doubles
	General advice
	Exercise

	Principles and testability
	Coverage Criteria
	Basic Coverage Criteria
	Logic Coverage Criteria
	Graph Coverage
	Input Partitioning

	Points for thought
	TDD
	Mutation testing
	Testing roles
	Principles


