Software testing

Software Testing

Programmers! Cast out your guilt! Spend half your time in joyous
testing and debugging! Stalk bugs with care, methodology, and
reason. Build traps for them. Be more artful than those devious

bugs and taste the joys of guiltless programming!

— Boris Beizer

Software Testing

Introduction

Testing maturity (Beizer 1990)

@ testing is just for debugging

@ testing is to show correctness of the product
© testing is to show incorrectness of the product
O testing is to reduce risk

@ testing is a mental discipline to develop better software

Software Testing

Introduction

Kinds of testing

® Functional
® Non-functional

® Maintenance

Software Testing

Introduction
Terminology

Functional testing — terminology

What is it we are looking for?
Bugs, faults, errors, failures?

® Fault: a static defect
® Error: an incorrect state: the manifestation of some fault

® Failure: an incorrect behaviour

Software Testing

Introduction
Terminology

Terminology

public static int countZeroes(int[] x) {
int count = 0;
for (int i = 1; i < x.length; i++) {
if (x[i] == 0) count++;

}

return count;

® Fault: int i = 1 instead of int i = 0
® Error: program state before the first loop check

® Failure: wrong result for input x = {0, 7, 2}

Software Testing

Testing levels

Traditional testing levels

® unit testing (or intra-method)

® module testing (or inter-method, intra-class)
® integration testing (or inter-class)

® system testing

® acceptance testing

Software Testing

Testing levels

The V-model

Analysis

Requirements

L> Architectural

Design

L> Subsystem

Design

—————————————————————— » System Test j
————————————————— > Integration Test j

.

Detailed Design

L> Implementation -———--- >

Acceptance
Test

Module Test j

Unit Test j

Software Testing

Testing levels

Testing in an agile setting

recall: goal is to have a running product after each sprint
® one instance of V-model for each feature (roughly)

® "write a little, test a little, write a little, test a little"”

® testing makes (safe) refactoring possible

® advanced: test-driven development — more on that later

Software Testing

Testing levels

Unit and module testing

Testing correctness of individual units of code.

Manual:
void test_validation() {
do {
string num = input("Type account number: ");
println("Result: " + validate_account(num));

}
}

Software Testing

Testing levels

Unit and module testing
Testing correctness of individual units of code.

Automatic, using a testing framework (e.g., JUnit):

import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;

public class MyTests {

@Test
public void multiplicationOfZeroIntegersShouldReturnZero() {
MyClass tester = new MyClass(); MyClass is tested

assertEquals(0, tester.multiply(10, 0), "10 x 0 must be 0");
assertEquals(0, tester.multiply(0, 10), "0 x 10 must be 0");
assertEquals(0, tester.multiply(0, 0), "0 x O must be 0");

}
}

Testing levels

Unit and module testing

® goal: verify the code as to achieve a good coverage of
possible behaviors (according to some coverage criteria)

® program unit is executed and its outcomes observed, or
compared to expected outcomes

® can be done both manually and automatically, white-box and
black box

Software Testing

Testing levels

Integration testing

2 unit tests. 0 integration tests

pmiriprogrammerhumor,

5:26 PM - Jan 14, 2016 - Twitter Web Client

11.9K Retweets 72 Quote Tweets 8,629 Likes

Source:
https://twitter.com/ThePracticalDev/status/687672086152753152

Software Testing

Introduction Testing levels Automated testing Coverage Testabilit Continuous Integration Points for thought

Integration testing

Verifying that different software modules work in unity.

® focuses on interactions and data flow between modules

® done before, during and after integration of a new module
into the main software package

® input: unit-tested modules or stubs / mock objects.
® modules are put together in an incremental manner

® additional modules should work without disturbing existing
functionality

® can be done both manually and automatically, white box and
black box (but typically black box)

Software Testing

Testing levels

Integration testing

Business Unit 1 Business Unit 2

P

of \

Software Testing

Testing levels

Kinds of integration testing

® Big Bang — integrate and test all components at once.
® Bottom Up — combine low-level modules first.

® Top Down — combine high-level modules first.

® Sandwich — a combination of the above.

Software Testing

Testing levels

System testing

Testing documented requirements of the fully integrated software.

® black box testing, typically done by a professional testing
agent

® includes both functional and non-functional testing

Smoke testing — does the absolute core functionality work?
Functionality testing — does it do what it should?

Robustness — does it recover well from input errors or failures?
Stress — what are the limitations / how does it deal with them?
Performance — does it respond quickly / use low resources?
Scalability — can it be used on a large scale?

Stability — does it keep running under full load?

Regression — does everything still work after maintenance?

Software Testing

Testing levels

Acceptance testing (or: beta-testing)

Testing usability by actual users.

® should be undertaken by a subject matter expert

® typically done by the customer or end-users

Software Testing

Automated testing

Designing automated tests

g oo
QA Engineer walks into a bar. Orders a beer.
Orders 0 beers. Orders 999999999 beers.
Orders a lizard. Orders -1 beers. Orders a
sfdeljknesv.

10:56 AM - 23 Sep 2014

Software Testing

Automated testing

Automated unit testing

® automatically test a single unit of code

® tests are designed to be repeatable

® testing outside the usual call chain exposes dependencies
® should contain both positive and negative outcomes

® can be done early in development

® typically done as white-box testing, but also black-box

® to test units, use mock objects, method stubs

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Fake objects
® Stubs

® Spies

® Mocks

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Fake objects — working objects, but which take shortcuts
® Stubs

® Spies

® Mocks

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Fake objects — working objects, but which take shortcuts

Stubs — objects providing fixed answers
® Spies

® Mocks

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Fake objects — working objects, but which take shortcuts

Stubs — objects providing fixed answers
int get_random number () { return 42; }

® Spies

® Mocks

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Fake objects — working objects, but which take shortcuts

Stubs — objects providing fixed answers
int get_random number () { return 42; }

Spies — stubs that record some information

® Mocks

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Fake objects — working objects, but which take shortcuts

Stubs — objects providing fixed answers
int get_random number () { return 42; }

Spies — stubs that record some information
void send mail() { sent++; }

® Mocks

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Fake objects — working objects, but which take shortcuts

Stubs — objects providing fixed answers
int get_random number () { return 42; }

Spies — stubs that record some information
void send mail() { sent++; }

Mocks — objects preprogrammed with expectations

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Cook <= Waiter <= Customer

® Fake cook: supplies frozen dinners with the right name
® Stub cook: always gives a hotdog

® Spy cook: always gives a hotdog, but remembers what was
actually asked

® Mock cook: is told by the test driver to expect a hamburger
request and given a hamburger to return, and will start
screaming if asked for a hot dog

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Cook <« Test driver

® Fake cook: supplies frozen dinners with the right name
® Stub cook: always gives a hotdog

® Spy cook: always gives a hotdog, but remembers what was
actually asked

® Mock cook: is told by the test driver to expect a hamburger
request and given a hamburger to return, and will start
screaming if asked for a hot dog

Software Testing

Automated testing
Test doubles

Mocking, stubbing, etc.

Cook <<= Waiter <= Test driver

® Fake cook: supplies frozen dinners with the right name
® Stub cook: always gives a hotdog

® Spy cook: always gives a hotdog, but remembers what was
actually asked

® Mock cook: is told by the test driver to expect a hamburger
request and given a hamburger to return, and will start
screaming if asked for a hot dog

Software Testing

Automated testing
General advice

Side benefits of automated unit testing

® forces you to consider edge cases and error handling early on

pushes you to have a decoupled and cohesive design
® decreases the barrier to refactoring code

provides a kind of living documentation for the system

Software Testing

Automated testing
General advice

Unit testing advice

® clear descriptive names of test functions

® clear failure description on asserts
assertEquals("adding one day to 2050/2/15",
expected, actual);

® when appropriate, use a timeout
@Test (timeout = 5000)

® test one thing at a time per method (preferably: one assert)
(use @Before and @After for setup and teardown functions)

® tests should avoid logic (minimise if/else, loops, try/catch)

Software Testing

Automated testing
General advice

Unit tests — things to think about

® What is wrong — the thing that is tested, or the test?
® Does not show absence of errors, only particular errors.

® |f the same person writes the test and the code, both may
have the same problem.

® The longer a unit test exists, the greater the chance that it is
not representative.

® Maintain unit tests as a first-class part of the code.

® May seem to take a lot of time, but actually saves time.

Software Testing

Automated testing
General advice

Unit tests — things to think about

More ; Less Tests

Pressure you You Write
feel
Less . Less Stable
Productive
your code

and accurate
becomes
you are

Software Testing

Automated testing
General advice

Manual versus automatic testing

® manual testing is time and cost consuming, especially with
repetition
® prone to human error (but: this works both ways)

® manual testing will capture problems that are hard to find
automatically

® of course: both needed

Software Testing

Coverage

Coverage Criteria

Software Testing

Coverage

Code coverage

® Exhausting testing of application: impossible
® Two perspectives on coverage

® Code coverage: all parts of code covered?
® Input coverage: all (classes of) input data covered?

Software Testing

Coverage
Basic Code Coverage Criteria

Basic Code Coverage Criteria

e function coverage: has every function (or subroutine) been
called?

® statement coverage: has every statement been executed?

® branch coverage: has every branch of control statements been
executed?

® condition coverage: has every boolean clause evaluated to
true and false?

Software Testing

Coverage
Basic Code Coverage Criteria

Basic Code Coverage Criteria — challenge

int f(int x, int y) {
int z = 0;
if ((x>0) && (y > 0)) {
Z = X;
}

return z;

function coverage:

® statement coverage:

branch coverage:

® condition coverage:

Software Testing

Coverage
Basic Code Coverage Criteria

Basic Code Coverage Criteria — challenge

int f(int x, int y) {
int z = 0;
if ((x>0) && (y > 0)) {
Z = X;
}

return z;

function coverage: £(0,0)

® statement coverage:

branch coverage:

® condition coverage:

Software Testing

Coverage
Basic Code Coverage Criteria

Basic Code Coverage Criteria — challenge

int f(int x, int y) {
int z = 0;
if ((x>0) && (y > 0)) {
Z = X;
}

return z;

function coverage: £(0,0)

® statement coverage: £(1,1)

branch coverage:

® condition coverage:

Software Testing

Coverage
Basic Code Coverage Criteria

Basic Code Coverage Criteria — challenge

int f(int x, int y) {
int z = 0;
if ((x>0) && (y > 0)) {
Z = X;
}

return z;

function coverage: £(0,0)
® statement coverage: £(1,1)
branch coverage: £(1,1); £(1,0)

® condition coverage:

Software Testing

Coverage
Basic Code Coverage Criteria

Basic Code Coverage Criteria — challenge

int f(int x, int y) {
int z = 0;
if ((x>0) && (y > 0)) {
Z = X;
}

return z;

function coverage: £(0,0)

® statement coverage: £(1,1)

branch coverage: £(1,1); £(1,0)

® condition coverage: £(1,0); £(0,1)

Software Testing

Coverage

Basic Code Coverage Criteria

Tool Support for Basic Coverage Criteria

® Fasy to automate. Coverage tools available for various
languages (e.g., Java: EclEmma)
® Tool executes an instrumented test run

® Gives percentages and visualizes covered and non-covered lines

& Java - CursorableLinkedList.java - Eclipse SDK

oy] 3}
Flo Edt Sorce Refactor Navigate Search Praject Run Window Help
- = 5 =
Jei- @l -3 -0-%- | & & C-o- @y e &
o it 52 | @, =0
Finished after 34,338 seconds public boolean addAll(int index, Collestion o] { e =]
Runs: 1200913009 BErorst 0 B Falures: 0 ific.isEmpty()) ¢ =
return false:
I — } else if{ size == index || size == 0) (
return addAllic):
g Falures | [Hierarchy) else t el
E-EEFW framenork TestSutte a| Listable succ = getListableAt{index);
14 unt framework. Testuite Listeble pred = (null == succ) ? null : succ.previ):
e TestBagltis Iteracor it = c.iterator():

] org. spache. commons collections. TestPrec
] TestSeti ks

Software Testi

while{it.hasNext{)) {

pred =
+
return true;

insertlistable (pred,succ, it.nexti]];

r

Coverage
Data Coverage Criteria

Input Partitioning

Basic idea:
® divide the set of possible inputs into equivalence classes

® test one input from each class

® assumption: all values in a block are equally useful for testing

Software Testing

Coverage
Data Coverage Criteria

An example

¢ function: abs(x)
® input domain: ..., —-3,—-2,—-1,0,1,2,3,...
® partitions: ..., —3,—-2,—1,0, 1,2,3,...

Software Testing

Coverage
Data Coverage Criteria

Input space partitioning

@ identify the component

whole program
module

class

function

@ identify the inputs

function/method parameters
file contents

global variables

object state

user provided inputs

© develop an input domain model

a way of describing the possible inputs
partitioned by characteristics

Software Testing

Coverage
Data Coverage Criteria

Requirements on partitioning

® partitions must cover the whole input space

® partitions must be disjoint

Software Testing

Coverage
Data Coverage Criteria

How to partition?

® semantic partitioning: identify characteristics of the data that
correspond to the intended functionality
® requires domain knowledge, generally not automated
® advantage: includes semantic information
® boundary-value analysis: make separate classes for boundary
values

Software Testing

Introduction Testing levels Automated testing Coverage Testability Continuous Integration Points for thought

Data Coverage Criteria

Semantic partitioning: a classic example

¢ Command: FIND
e Syntax: FIND (pattern) (file)

® Function: The FIND command is used to locate one or more
instances of a given pattern in a text file. All lines in the file
that contain the pattern are written to standard output. A
line containing the pattern is written only once, regardless of
the number of times the pattern occurs on it.
The pattern is any sequence of characters whose length does
not exceed the maximum length of a line in the file. To
include a blank in the pattern, the entire pattern must be
enclosed in quotes (). To include a quotation mark in the
pattern, two quotes in a row ("") must be used.

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 1: analyse the specification
® What is the component?
® What are the parameters?

® \What are the characteristics?

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 1: analyse the specification
® What is the component?
® What are the parameters?

® \What are the characteristics?

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 1: analyse the specification
® What is the component?
® What are the parameters?

® \What are the characteristics?

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 1: analyse the specification
® What is the component?
® What are the parameters?

® \What are the characteristics?

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 1: analyse the specification
® What is the component?
® the FIND program

® What are the parameters?

® \What are the characteristics?

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 1: analyse the specification
® What is the component?
® the FIND program
® \What are the parameters?
® pattern
® input file

® \What are the characteristics?

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 1: analyse the specification
® What is the component?

the FIND program

® What are the parameters?

pattern
input file

® \What are the characteristics?

pattern size

quoting

embedded quotes

number of pattern occurrences in file
number of occurrences on a particular line

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 2: partition the input space

® select one region per characteristic at a time

® combine into test frames (test case plans)

® example:

pattern size: empty

quoting: pattern is quoted

embedded blanks: several embedded blanks
embedded quotes: no embedded quotes

file name: good file name

number of occurrences of pattern in file: none

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 2: partition the input space

® select one region per characteristic at a time

® combine into test frames (test case plans)

® example:

pattern size: empty

quoting: pattern is quoted

embedded blanks: several embedded blanks
embedded quotes: no embedded quotes

file name: good file name

number of occurrences of pattern in file: none

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 2: partition the input space

® select one region per characteristic at a time

® combine into test frames (test case plans)

® example:

pattern size: empty

quoting: pattern is quoted

embedded blanks: several embedded blanks
embedded quotes: no embedded quotes

file name: good file name

number of occurrences of pattern in file: none

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 2: partition the input space

® select one region per characteristic at a time

® combine into test frames (test case plans)

® example:

pattern size: empty

quoting: pattern is quoted

embedded blanks: several embedded blanks
embedded quotes: no embedded quotes

file name: good file name

number of occurrences of pattern in file: none

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 3: identify constraints among the characteristics and
blocks
® pattern size:
® empty [property Empty]
single character [property NonEmpty]
many characters [property NonEmpty]
longer than any line in the file [property NonEmpty]

® quoting:
® pattern is quoted [property Quoted]
® pattern is not quoted [if NonEmpty]
® pattern is improperly quoted [if NonEmpty]

Software Testing

Coverage
Data Coverage Criteria

A classic example

Step 4: create tests
® select values that satisfy the selected blocks for each frame

® climinate tests that cover redundant scenarios

Step 5: run or automate your test cases!

Software Testing

Coverage
Data Coverage Criteria

Combination strategies

e All Combinations Coverage (ACoC): what the name says
® Each Choice Coverage (ECC): a value from each block for
each characteristic must be used in at least one test

® Pair-Wise Coverage (PWC): a value from each block for each
characteristic must be combined with a value from every other
block for every other characteristic

® T-Wise Coverage (TWC): like PWC, but with groups of more
than two characteristics combined

Software Testing

Coverage
Data Coverage Criteria

Combination strategies

Consider a system with the following parameters and values:
® parameter A has values Al and A2
® parameter B has values Bl and B2
® parameter C has values C1, C2 and C3

o All Combinations Coverage: 12 tests
® Each Choice Coverage: 3 tests

® Pair-Wise Coverage: 6 tests

e T-Wise Coverage: 12 tests

Software Testing

Coverage
Data Coverage Criteria

Why pairwise?

® many faults are caused by the interaction between two
parameters

® it's simply not practical to cover all interactions between
parameters

Software Testing

Coverage
Data Coverage Criteria

Boundary-value analysis

® motivation: programmers often make mistakes in values at or
near the boundaries

® for example: z < 0 instead of z <=0

® solution: always include tests for values at or near the
boundaries

® example: itemCode € {99,...,999}
e include tests for: 98,99, 100,998,999, 1000

Software Testing

Coverage
Data Coverage Criteria

Testability

Software Testing

Introduction Testing levels Automated testing Coverage Testability Continuous Integration Points for thought

Recall: software design principles

Single Responsibility Principle

Open-Closed Principle

Dependency Inversion Principle

Isolate Third-Party Components

Satisfying these principles makes the code more testable! Both
because it allows units to be tested separately (and without
unnecessary side effects), and because good use of principles makes
it easier to mock certain objects like low-level classes or third-party
components.

Software Testing

Testability

Typical testability flaws and their remedies

Constructor Does Real Work

Digging Into Collaborators
Brittle Global State & Singletons
Class Does Too Much

Software Testing

Testability

Typical testability flaws and their remedies

Constructor Does Real Work

Digging Into Collaborators
Brittle Global State & Singletons
Class Does Too Much

Software Testing

Introduction Test S Automated testing Co Testability Continuous In atio Points for thc

Before: Hard to Test

// Basic new operators called directly 1in
// the class' constructor. (Forever
// Ereventing a seam to create different
itchen and bedroom collaborators).
class House {
Kitchen kitchen = new Kitchen();
Bedroom bedroom;

House() {
bedroom = new Bedroom();

/o

// An attempted test that becomes pretty hard

class HouseTest extends TestCase {
public void testThisIsReallyHard() {
House house = new House();
// Darn! I'm stuck with those Kitchen and
// Bedroom objects created in the
// constructor.

..

Software Testing

Introduction Testing levels Automated testing erage Testability Continuous Integration Points for thought

After: Testable and Flexible Design

class House {
Kitchen kitchen;
Bedroom bedroom;

// Have Guice create the ohjects
and pass them in

@Inject

House(Kitchen k, Bedroom b) {
kitchen = k;
bedroom = b;

/AT

¥

// New and Improved is trivially testable, with any
// test-double objects as collaborators.

class HouseTest extends TestCase {
public void testThisIsEasyAndFlexible() {
Kitchen dummyKitchen = new DummyKitchen();
Bedroom dummyBedroom = new DummyBedroom();
House house = .
new House(dummyKitchen, dummyBedroom);

// Awesome, I can use test doubles that
// are Tighter weight.

/AT

Software Testing

Testability

Typical testability flaws and their remedies

Constructor Does Real Work

Digging Into Collaborators
Brittle Global State & Singletons
Class Does Too Much

Software Testing

Introduction Tes evels Automated testing Cove e Testability Continuous Integration Points for tho

Before: Hard to Test

// This 1s a service object that works with a value
// object (the User and amount).

class SalesTaxCalculator {
TaxTable taxTable;

SalesTaxCalculator(TaxTable taxTable) {
this.taxTable = taxTable;

float computeSalesTax(User user, Invoice invoice) {
// note that "user" is never used directly

Address address = user.getAddress();
float amount = invoice.getSubTotal();
return amount * taxTable. getTaxRateCaddress),

H

// Test1nE exposes the problem by the amount
of work necessary to build the object graph, and // test
the small behavior you are interested in.

class SalesTaxCalculatorTest extends TestCase {

SsalesTaxCalculator_calc =
new SalesTaxCalculator(new TaxTable());
// So much work wiring together all the
// objects needed
Address address =
new Address("1600 Amphitheatre Parkway...");
User user = new User(address);
Invoice invoice =
/ new Invoice(l, new ProductX(95.00));
assertEquals(
0.09, calc.computeSalesTax(user, invoice), 0.05);

Introduction Testing s Automated testing ¢ ge Testability Continuous Integration Points for thought

|After: Testable and Flexible Design
// Reworked, 1t only asks for the specific
// objects that it needs to collaborate with.

class SalesTaxCalculator {
TaxTable taxTable;

SalesTaxCalculator(TaxTable taxTable) {
this.taxTable = taxTable;

// Note that we no Tonger use User, nor do we
// dig inside the address. (Note: we would
f{ use a Money, BigDecimal, etc. in reality).
float computeSalesTax(Address address,
float amount) {
return amount * taxTable.getTaxRate(address);

1
// The new API 1s clearer in what collaborators
// it needs.

class SalesTaxCalculatorTest extends TestCase {

SalesTaxCalculator calc =
new_SalesTaxCalculator(new TaxTable());
// only wire together the objects that
// are needed

Address address =
new Address("1600 Amphitheatre Parkway...");

ass ertEqua'Is(

.09,
calc.computeSalesTax(address, 95.00),
0.05);

i

Software Testing

Testability

Typical testability flaws and their remedies

Constructor Does Real Work

Digging Into Collaborators
Brittle Global State & Singletons
Class Does Too Much

Software Testing

Introduction Testing levels Automated testing Cov Testability Continuous Integration Points for thought

Before: Hard to Test

// Awkward and brittle tests, obfuscated by Flags'
// hoilerplate setup and cleanup.

class NetworkLoadCalculatorTest extends TestCase {

public void testMaximumAlgorithmReturnsHighestLoad() {
Flags.disablestatecheckingForTest();

ConfigFlags .FLAG_loadAlgorithm.setForTest ("maximum");

NetworkLoadcCalculator_calc =

new NetworkLoa.dCa'Icu'Iator() 3
calc.setLoadSources (10,
assertEquals (10, calc. ca'lcu]ateTota] Load());

// Don't forget to clean up after
// yourself following every test
_Igth'is could go_in tearDown).
Con igFlags.FLAG_TloadAlgorithm.resetForTest();
1 Flags.enablestatecheckingForTest();
}

// Elsewhere... the NetworkLoadcalculator's methods
class NetworkLoadCalculator {

/o
'int/ca'lcu'l ateTotalLead()

{
... somewhere read the flags' global state
String algorithm =

y ConfigFlags.FLAG_loadAlgorithm.get();

¥

Software Testing

Introduction Testing 3 Automated testing Coverage Testability Continuous Integration Points for thou

IAfter: Testable and Flexible Design

// The new test 1is easier to understand and Tess
// T1ikely to break other tests.

class NetworkLoadcCalculatorTest {
public void testMaximumAlgorithmReturnsHighestLoad()

NetworkLoadCalculator _calc =

new NetworkLoadCa1cu'Iator('maximum");
calc.setlLoadsources (10,
assertEquals (10, calc. ca'lcu'lateTota]Lcad()),

// Replace the_global dependency on the Flags with
the Guice FlagBinder that gives named annotations

// to flags automatically. String F'Iag_xxx is " bound

// to_String.class annotated with @Named("xx" g

// (A11 flag types are bound, not just String.

// In your Module:

new FlagBinder(binder()).bind(ConfigFlags.class);

// Replace all the old calls where you read Flags with
/{ injected values.
class NetworklLoadcCalculator {

String loadAlgorithm;

// Pass in flag value into the constructor
NetworklLoadCalculator
@Named("loadAlgorithm™) String loadAlgorithm) {
//... use the String value however you want,
//and for tests, construct different
//NetworkLoadcalculator objects with other values.
this.loadAlgorithm = ToadAlgorithm;

/o

Software Testin

Testability

Typical testability flaws and their remedies

Constructor Does Real Work

Digging Into Collaborators
Brittle Global State & Singletons
Class Does Too Much

Software Testing

Continuous Integration

Continuous Integration

Software Testing

Continuous Integration
Motivation

Motivation

Have you ever:

Software Testing

Continuous Integration
Motivation

Motivation

Have you ever:
® Broken everyone's code with a push?

Software Testing

Introduction Testing levels Automated testing Coverage Testabilit Continuous Integration Points for tho

Motivation

Motivation

Continuous Integration
Motivation

Motivation

Have you ever:
® Broken everyone's code with a push?
® Due to laxness?

Software Testing

Continuous Integration

Motivation

Motivation

Software Testing

Continuous Integration
Motivation

Motivation

Have you ever:
® Broken everyone's code with a push?
® Due to laxness?
Due to cached files?
Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

Software Testing

Continuous Integration
Motivation

Motivation

Have you ever:

® Broken everyone's code with a push?
® Due to laxness?
® Due to cached files?
® Due to different versions of the compiler or operating system?
® Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so

much time?

Software Testing

Continuous Integration
Motivation

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

Software Testing

Continuous Integration
Motivation

Motivation

Software Testing

Continuous Integration
Does it build?

Continuous integration

® merge in small changes frequently

have a dedicated server to automate building and testing

® receive quick feedback on a broken build

fix broken builds rather than pushing further changes

Software Testing

Continuous Integration
Does it build?

Continuous integration

® merge in small changes frequently

have a dedicated server to automate building and testing

® receive quick feedback on a broken build

fix broken builds rather than pushing further changes

We have bought for you: GitHub Actions
Instruction lecture from our CTO Joren will be made availablel

Software Testing

Continuous Integration
Does it build?

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

® Spent ages at release time figuring out dependencies?

Software Testing

Continuous Integration
Does it build?

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

® Spent ages at release time figuring out dependencies?

Software Testing

Continuous Integration
Does it build?

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

® Spent ages at release time figuring out dependencies?

Software Testing

Continuous Integration
Everywhere?

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

® Spent ages at release time figuring out dependencies?

Software Testing

Continuous Integration
Everywhere?

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

® Spent ages at release time figuring out dependencies?

Software Testing

Continuous Integration
Does it work?

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

® Spent ages at release time figuring out dependencies?

Software Testing

Continuous Integration
Does it work?

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

® Spent ages at release time figuring out dependencies?

Software Testing

Continuous Integration
Good habits

Motivation

Have you ever:
® Broken everyone's code with a push?

® Due to laxness?

Due to cached files?

Due to different versions of the compiler or operating system?
Broken something deeper and failed to notice it quickly?

® Decided to postpone integrating a branch because it takes so
much time?

® Spent a lot of time getting a branch working with the rest of
the code again?

® Spent ages at release time figuring out dependencies?

Software Testing

Continuous Integration
Good habits

Branches and Cl

Software Testing

Continuous Integration
Good habits

Branches and Cl

® GitHub Actions works on branches!

® Keep up-to-date using git rebase

Software Testing

Continuous Integration
Good habits

Git rebase

Software Testing

Continuous Integration
Good habits

Git rebase

Software Testing

Continuous Integration
Good habits

Branches and Cl

® Travis Cl works on branches!

® Use .travis.yml to indicate which branches to do (only or
except).

® Keep up-to-date using git rebase

Software Testing

Continuous Integration
Good habits

Branches and Cl

Travis Cl works on branches!

® Use .travis.yml to indicate which branches to do (only or
except).

® Keep up-to-date using git rebase

Even in branches, keep everything working.

Software Testing

Continuous Integration
Good habits

Branch by Abstraction

)
Client Code
_
)

Client Code
Supplier
_
 —

Client Code
_

Software Testing

Continuous Integration
Good habits

Branch by Abstraction

() Abstraction
Client Code
_
R

Flawed
Supplier

Client Code
_
R

Client Code
_

Software Testing

Continuous Integration
Good habits

Branch by Abstraction

)
Client Code
_
)
Client Code Abstraction
Supplier
_

Client Code

Software Testing

Continuous Integration
Good habits

Branch by Abstraction

Client Code
L_

Client Code
Supplier
L_

; @
Abstraction New Supplier

.

Client Code

Software Testing

Continuous Integration
Good habits

Branch by Abstraction

R
Client Code
_
R
Client Code
_
R

Client Code
_

Software Testing

Continuous Integration
Good habits

Best principles

® Push regularly.

® |ntegrate quickly.

® Create a comprehensive automated test suite.
® Keep the build and test process short.

® Still test locally before pushing!

® Don't push further commits on a broken build.
® Discuss rules on responsibility.

® Keep everything in version control (except binaries and
passwords).

Software Testing

Continuous Integration
Continuous delivery

Continuous delivery

® You already have automatic builds... why not automatic
deployment?
® Alternatively: semi-automatic deployment with humans
pushing just a few buttons.
® Benefits:
® |ow cycle time due to ease of releases

® high realiability through removing human error
® casy to roll back smaller changes which cause problems

Software Testing

Continuous Integration
Conclusions

Concrete benefits of continuous integration

detecting defects as early as possible

® reducing problems caused by configuration or environment

every push leads to potentially releasable software

makes (semi-)automatic deployment easy

® deployment flexibility

Software Testing

Points for thought

Some Considerations

Software Testing

Introduction Testing levels Automated testing Coverage ty Points for thought

TDD

Test-Driven Development

Run &
Watch
Tests Fail

Refactor/
Organize

Software Testing

Points for thought
TDD

Principles of TDD

® always write the test before the code
® write the simplest code that works

® not just unit tests; also have tests based on user stories
(ATDD)

e works well with specification by example
® minimise code in hard-to-test modules

® best used from the start
(but boy scout rule)

Software Testing

Points for thought
Mutation testing

How effective are my tests? Mutation testing!

Basic idea:
® A program is changed at exactly one place, in a small way.
® The test set is run to see whether it outlaws this mutant.
® If so, the mutant is called killed.

® The aim is to kill as many mutants as possible.

The killing score is perceived as a goodness measure for the
test set.

Software Testing

Points for thought
Testing roles

Erroneous perception

“I'll just find the bugs by running the client program.”

Too often:
® testing is seen as a novice's job
® testing is assigned to the least experienced team member

® testing is done as an afterthought (or not at all)

Definition of done: includes testing!

Software Testing

Points for thought
Testing roles

Tasks in testing:

test design

® test automation
® test execution
® test evaluation

Each type of activity requires different skills, background,
knowledge, education and training!

Software Testing

Points for tho
Testing roles

Testing: a destructive activity?

® vyes: the goal is to uncover flaws

® no: systematically make the program better and better

TestResults X |Output | Usages Notifications Analyzer
Gradie TestRun :test started X

ua All 8 tests passed. (0.7015)
obiledoudintegrationtest

@ testiikingNonEsistantvideo pas

@ testaddvideoMetadata

@ testFindByName passe

@ testDenyvideoddw cutOAuth passed (0025

@ testiikingTwice passe: 3s

V] tesme(i‘DuaﬁonLessThan passed

@ testaddGetvideo passe

@ testiikeCount passed

:[€ 4]0 © OEO|

The fun part: turning "red” tests "green”!

Software Testing

Points for thought
Principles

Principles of testing

® Exhaustive testing is not possible.
(So you'll have to do risk assessment and try to find a
representative sample of test cases.)

e Defect clustering: 80% of the problems in 20% of the
modules.

® Pesticide paradox: review test cases occasionally.
® Testing shows presence, not absence of defects.
® Absence of error does not imply usability!

® Test early, test often.

Software Testing

Points for thought

Principles

Reminder: Assignment 1

Reflection on Code Quality

Tell us, in 300 - 600 words, what you (personally!) have done to improve the code quality in your product.

1. List design principles and software patterns you (personally!) used and explain how you applied
them (with examples from your code)

€ your actions to coupling and cohesion.

Explain how the quality of your code helped increase testability. (Hint: Do not discuss how you

tested your code, but what made your code testable.)
i s-premature generalization: Was this ever an issue for you and if yes, h

4.

(Or if you have not improved it because it was built from scratch and/or already very good, describe what
you have done to maintain the high quality.)

Points for thought
Principles

Sources

Guide to writing testable code:
https://p.rogram.me/resource/attachment/
Guide-Writing_Testable_Code.pdf

Software Testing

https://p.rogram.me/resource/attachment/Guide-Writing_Testable_Code.pdf
https://p.rogram.me/resource/attachment/Guide-Writing_Testable_Code.pdf

	Introduction
	Terminology

	Testing levels
	Automated testing
	Test doubles
	General advice

	Coverage
	Basic Code Coverage Criteria
	Data Coverage Criteria

	Testability
	Continuous Integration
	Motivation
	Does it build?
	Everywhere?
	Does it work?
	Good habits
	Continuous delivery
	Conclusions

	Points for thought
	TDD
	Mutation testing
	Testing roles
	Principles

