

Writing Maintainable Code

Cynthia Kop

14 February, 2022

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Source: http://www.xkcd.com

Writing Maintainable Code Cynthia Kop

http://www.xkcd.com

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Recap: agile development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Recap: Scrum

Initiate

Implement

Release

SprintSprint planning Sprint review

n = Nplanned?

Yes
No

n := 1

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Which decisions should you take early on?

• the programming language X

• the coding standards in your team X

• the overall architecture X

• the structure of your classes X

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture

Architecture: how the system is structured overall, decomposed
and organised into components, and interfaces between them

• includes decisions like programming language and platform

• various architecture patterns to make it easier to achieve
high-quality code

• change later is hard (but not impossible)

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

Model-View-Controller pattern

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

Client-server pattern

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

Data-centered pattern

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

Pipe-and-filter pattern

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

Call-and-return pattern

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

Even-driven pattern

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

Three-tier pattern

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

Challenge: design an architecture

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Architecture patterns

A warning

Avoid too much up-front design!

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

“Current development speed is a function of past development
quality.” – Brian McAllister

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Technical debt

“With borrowed money, you can do something sooner than you
might otherwise, but then until you pay back that money you’ll be

paying interest. I thought borrowing money was a good idea, I
thought that rushing software out the door to get some experience
with it was a good idea, but that of course, you would eventually
go back and as you learned things about that software you would

repay that loan by refactoring the program to reflect your
experience as you acquired it.”

Ward Cunningham

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Writing high-quality code

• Coupling: how strong are the connections between separate
parts of your code?

• Cohesion: how well does code that is put together really
belong together?

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Coupling

• strength of interconnections, measure of interdependence

• the more we must know about A to understand or work with
B, the higher their coupling

• increases with complexity and obscurity of interfaces
• Goal: keep coupling low

• high coupling means greater cost to making changes
• high coupling makes it harder to test separate parts, and

decreases readability

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Content coupling

One module relies on the internal workings of another module.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Content coupling

public void addUserProps(string user, string *props){
Jactions to load the user into variable myUserK
myUser.properties.append(props);

}

public string *queryUserProperties(string user){
addProperty(playername, {});
return copy(myUser.properties);

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Content coupling

class A {
int arr[3];

int []get arr() { return arr; }
}

class B {
void myfun(A a) {
int brr[] = a.get arr();

brr[1] = 2;

}
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Common coupling

Two or more modules share some information by using global data.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Common coupling

void f() { if (settings screen == BIG) { ...} }
...

void g(int kind) { ...settings screen = kind; ...}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Common coupling
class A {

C mydata;

void set data(C data) { mydata = data; }
}
class B {

C mydata;

void set data(C data) { mydata = data; }
}
void setup() {

A a;

B b;

C c;

...

a.set data(c);

b.set data(c);

}
Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Common coupling in Discworld

Job market in Ankh-Morpork

• “Buy 2 red dresses and deliver them to Ms. Cosmopilite.”

Shop in Djelibeybi

• Is the only place in the game that sells red dresses.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Control coupling

One module controls the flow of another.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Control coupling

void a(boolean flag) {
// do some shared preparation stuff

if (flag) { // do thing 1 }
else { // do thing 2 }

}

void b() {
...

a(true);

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Control coupling

cleanupConnections(boolean force) {
Connection *remainder = new Array();

foreach (Connection c in connections) {
int errcode = c.close();

if (errcode == 1) {
if (force) c.forceClose();

else remainder.add(c);

}
}
connections = remainder;

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Control coupling

bool updateBirth(string user, Date bd, bool verify){
int age = calculateAge(bd, time());

if (verify) {
if (age < 18) {
popup("You are too young to participate!\n");
return false;

}
Account account = loadUser(user);

user.setBirthday(bd);

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Stamp coupling

A composite data structure is shared between modules.
Note: this is already pretty low coupling. But if several functions
only use parts of the same data structure, it may be worth splitting
the structure.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Stamp coupling

typedef struct rectangle {
int length, width, area, perimeter, color;

} RECTANGLE;

int calcArea(RECTANGLE r) {
return r.length * r.width;

}

void main() {
RECTANGLE rect;

rect.length = 7;

rect.width = 6;

rect.color = RED;

rect.area = calcArea(rect);

}
Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Stamp coupling

class GameElements {
GameObject *board[WIDTH][HEIGHT];

boolean minesVisible;

int timeOfNextReset();

...

}

class Player {
void init(GameElements ge) {
// find empty place on the board

// and put the player there

}
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Data coupling

Elementary data is passed between modules (for example: through
parameter passing).

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Data coupling

class A {
int k;

void f() {
...

int tmp = Util.sqrt(k);

...

}
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Data coupling
typedef struct rectangle {
int length, width, area, perimeter, color;

} RECTANGLE;

int calcArea(int length, int width) {
return r.length * r.width;

}

void main() {
RECTANGLE rect;

rect.length = 7;

rect.width = 6;

rect.color = RED;

rect.area = calcArea(rect.length, rect.width);

...

}
Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Types of coupling

From high coupling to low coupling:

• content coupling

• common coupling

• control coupling

• stamp coupling

• data coupling

• message coupling

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Message coupling

One module sends a message to another without passing any data.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling

Message coupling

void keyPressed(Key k) {
if (k.isEscapeKey()) {
foreach (KeyListener kl in listeners) {
kl.escapePressed();

}
}

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Cohesion

• strength of inner bonds, relationships

• concept of whether elements belong together or not, measure
of how focused the responsibilities are

• generally: the higher the cohesion within each module, the
looser the coupling between the modules

• high cohesion gives greater reusability and readibility, and
lower complexity
• in an OO setting:

• method cohesion
• class cohesion
• inheritance cohesion

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Class cohesion

• Why different attributes and methods are together

• Do they contribute to supporting exactly one concept?

• Or can the methods be partitioned into groups, each
accessing (almost only) a distinct subset of attributes?

• Splitting could introduce more coupling, but is still preferable.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Inheritance cohesion

• Why classes are together in a hierachy.

• Main reasons: generalisation-specialisation, code reuse

• More about this next week!

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Coincidental cohesion

Elements in a module are grouped together arbitrarily, with no
relationship between them.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Coincidental cohesion

class Utilities {
pretty print(string format, Object[] data) { ... }
int average(int a, int b) { ... }
int maximum(int a, int b) { ... }

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Coincidental cohesion

Elements in a module are grouped together because they are in
some way logically related, although their functionality is very
different.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Logical cohesion

module PolygonFunctionality() {
void areaOfTriangle(int a, int b, int c) { ... }
void perimeterOfRectangle(int a, int b) {...}
...

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Temporal cohesion

Elements in a module are grouped together because they are used
at the same time.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Temporal cohesion

void init() {
count = 0;

open student file();

error = null;

}

void error recovery() {
Jclose open filesK
Jreset some variablesK
Jrestart main loopK

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

void tetris block fall(int block id) {
update timer();

move block one down(block id);

if (block has landed(block id)) {
PAUSE(100);

handle landing(block id);

}
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Procedural cohesion

Elements in a module are grouped together because they are
executed sequentially to perform a certain task.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Procedural cohesion

void store address(string address, string user) {
Jverify that the user existsK
Jverify that the address is validK
Jestablish connection to the databaseK
Jexecute appropriate sql queryK

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Procedural cohesion

Two elements work on the same input data and/or produce the
same output data.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Communicational cohesion

void determine customer details(int accountno) {
Jdo some work to find the nameK
Jdo some work to find the loan balanceK
return new c details(name, balance)

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Sequential cohesion

Parts of a module are grouped together because they should be
executed sequentially, with the output from one part serving as the
input to the next.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Sequential cohesion

void handle record(RECORD record) {
record.user = my user;

record.valid = check(record.user, record.account);

return record;

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Functional cohesion

In a single component, all the essential elements are combined
together for performing a single task, and only those.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Functional cohesion

float calculate sine(int angle) { ... }
RECORD read transaction record(int trans id) { ... }
void assign seat(int user id, int seat id) { ... }

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

• coincidental

• logical

• temporal

• procedural

• communicational

• sequential

• functional

• atomic

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Atomic cohesion

A single component that cannot be reduced any further.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Cohesion

Atomic cohesion

int myfun(x) {
return 5 * x + 3;

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

882 varargs int move with look(mixed dest, string

messin, string messout) {
883 return to default position(1);

884 if ((int)this object()->move(dest, messin,

messout) != MOVE OK)

885 return 0;

886 room look();

887 return to default position(1);

888 return 1;

889 }

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

int room look() {
if (!(interactive(this object())))

return 0;

this object()->ignore from history("look");

this object()->bypass queue();

command("look");

return 1;

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

The look command:

• calculates the degree of darkness (for visibility)

• checks the lookmap setting for the player

• calls environment(this player())->long lookmap(dark,

lookmap)

• prints the result to the player

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

1594 string long lookmap(int dark, int lookmap type) {
1595 if(dark)

1596 return 0;

1597

1598 return lookmap text(long(dark), lookmap type);

1599 }

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

string lookmap text(string text, int lookmap type) {
string ret = text;

string map = lookmap(this player()->map setting());

send room info(this player(), map);

switch(lookmap type) {
case NONE: return text;

case TOP: return map + text;

case LEFT: return combine(map, text);

}
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

void send room info(object player, string map) {
// send metadata "room.info": room and city name

if (player->map setting() == ASCIIMAP) {
string writmap = lookmap(WRITTENMAP);

player->send metadata("room.map", map);

player->send metadata("room.writmap", writmap);

} else {
string asciimap = lookmap(ASCIIMAP);

player->send metadata("room.map", asciimap);

player->send metadata("room.writtenmap", map);

}
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

• Identify where coupling and cohesion are bad.

• Suggest improvements to the design of the “player enters a
room, is given a room description and metadata” code.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
Jclose open filesK
Jreset some variablesK
Jrestart main loopK

}

void store address(string address, string user) {
Jverify that the user existsK
Jverify that the address is validK
Jestablish connection to the databaseK
Jexecute appropriate sql queryK

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
Jclose open filesK
Jreset some variablesK
Jrestart main loopK

}

void store address(string address, string user) {
Jverify that the user existsK
Jverify that the address is validK
Jestablish connection to the databaseK
Jexecute appropriate sql queryK

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
close all open files();

reset file data();

restart main loop();

}

void store address(string address, string user) {
Jverify that the user existsK
Jverify that the address is validK
Jestablish connection to the databaseK
Jexecute appropriate sql queryK

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
close all open files();

reset file data();

restart main loop();

}

void store address(string address, string user) {
Jverify that the user existsK
Jverify that the address is validK
Jestablish connection to the databaseK
Jexecute appropriate sql queryK

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
close all open files();

reset file data();

restart main loop();

}

void store address(string address, string user) {
int user index = find user(user);

validate address();

class db = open db connection();

db.store address(user index, address);

}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Goal: functional cohesion in all modules (functions, units)

Note: moving functionality into separate modules is not always
enough!

void tetris block fall(int block id) {
update timer();

move block one down(block id);

if (block has landed(block id)) {
PAUSE(100);

handle landing(block id);

}
}
However: having the separate functions helps with restructuring!

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Basic Guidelines

– Software Improvement Group

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Basic Guidelines

– Software Improvement Group

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Keep your functions (units) manageable.

• Functions should not be too long (guideline: ≤ 15 lines)

• Functions should not have too many decisions in them
(guideline: ≤ 4 branch points)

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Limit number of parameters

int *parry modifier(object defender, object attacker,

object defense weapon, object attack weapon,

int parry defense bonus, int distance,

int give feedback) {
...

}
Fine when used as a stand-alone occurrence (although it may be
indicative that your function is too large / complex), but often the
same large set of parameters occurs in multiple places. Should
some of these parameters be combined into a single structure, e.g.,
attack data?

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Duplicate code

If you copy N lines of code
with N ≥ 3
then you should do (N − 3) ∗ 5 pushups!

• an idea should only be expressed in one place (ease of change)

• you already need it more than once – make it more reusable!

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Keep your architecture manageable.
• Modules should not be too long (guideline: ≤ 400 lines)

• Overall codebase should not be too large (guideline: ≤ 200k
lines)

• Few top-level components, minimise connections between
them

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Keep your architecture manageable.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Test all non-trivial code automatically

Manual:
void test validation() {
do {
string num = input("Type account number: ");

println("Result: " + validate account(num));

}
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Test all non-trivial code automatically

Automatic:

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Boy Scout Rule

Leave the campground cleaner than you found it.

• Leave no unit level code smells behind.

• Leave no bad comments behind.

• Leave no code in comments behind.

• Leave no dead code behind.

• Leave no long identifier names behind.

• Leave no magic constants behind.

• Leave no badly handled exceptions behind.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Maintaining a lowly coupled, highly cohesive design that
can adapt to change

The key to maximizing reuse lies in anticipating new requirements
and changes to existing requirements, and in designing your

systems so they can evolve accordingly. – Gang of Four

Avoid premature generalisation!

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Design in eXtreme Programming

When implementing a new feature:

1 write a test

2 write code that satisfies the test

3 look back and realise if a change in design is required

4 refactor

If design documents are required, make them afterwards.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Incremental design

During/after implementing, ask questions:

• Is this code similar to other code in the system?

• Are class responsibilities clearly defined?

• Are concepts clearly represented?

• How well does this class interact with other classes?

If there is a problem:

• Jot it down, and finish what you’re doing.

• Discuss with teammates (if needed).

• Follow the ten-minute rule.

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Incremental design

• The first time you create a design element, be completely
specific.

• The second time you work with an element, make it general
enough to solve both problems.

• The third time, generalise it further.

• By the fourth or fifth time, it’s probably perfect!

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Incremental design

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Simplicity in agile design

Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.

– Antoine de Saint-Exupéry

Any intelligent fool can make things bigger, more complex and
more violent. It takes a touch of genius and a lot of courage

to move in the opposite direction.

– Albert Einstein

Keep It Simple, Stupid

– U.S. Navy

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Simplicity in agile design

Keep It Simple, Stupid

The system should be:

• appropriate for the intended audience

• communicative

• factored

• minimal

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Agile and incremental design

See also:

• http://www.jamesshore.com/Agile-Book/simple_

design.html

• http://www.jamesshore.com/Agile-Book/incremental_

design.html

Writing Maintainable Code Cynthia Kop

http://www.jamesshore.com/Agile-Book/simple_design.html
http://www.jamesshore.com/Agile-Book/simple_design.html
http://www.jamesshore.com/Agile-Book/incremental_design.html
http://www.jamesshore.com/Agile-Book/incremental_design.html

	Recap
	Early decisions
	Architecture patterns

	Technical debt
	Coupling and Cohesion
	Coupling
	Cohesion
	Coupling and cohesion: an example

	General advice
	Agile design

