

Writing Maintainable Code

Cynthia Kop

14 February, 2022

Writing Maintainable Code

HOW TO WRITE GOOD CODE:

SPAGHETTI CODE.

o
THROW IT ALLOOT 3
AND START OVER.
GocD]
conE

Source: http://www.xkcd. com

http://www.xkcd.com

Recap: agile development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
e Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Writing Maintainable Code Cynthia Kop

Recap: Scrum

Initiate

—1 Implement

Sprint plannlngj—{Sprlnt]—>

n = Nplanned?

No
Yes

Release

Writing Maintainable Code Cynthia Kop

SIMPLY EXPLAINED

o

SOMETHING

GREAT
SOFTWARE

DEVELOPMENT PROCESS

Writing Maintainable Code Cynthia Kop

Early decisions

Which decisions should you take early on?

the programming language

the coding standards in your team

the overall architecture

SEENIENIEN

the structure of your classes

Writing Maintainable Code Cynthia Kop

Early decisions

Architecture

Architecture: how the system is structured overall, decomposed
and organised into components, and interfaces between them

® includes decisions like programming language and platform

® various architecture patterns to make it easier to achieve
high-quality code

® change later is hard (but not impossible)

Writing Maintainable Code Cynthia Kop

Early decisions
Architecture patterns

Model-View-Controller pattern

"

UPDATES MANIPULATES
VIEW CONTROLLER
\ /
()
DY &
$ 0"
N /
USER

Writing Maintainable Code Cynthia Kop

Early decisions
Architecture patterns

Client-server pattern

Writing Maintainable Code Cynthia Kop

Early decisions

Architecture patterns

Data-centered pattern

Client
software

Client

Client
software

software

software

Data store
[repository or
blackboard)

Client
software

Client
software

Writing Maintainable Code

Client
software

Client
software

Cynthia Kop

Early decisions
Architecture patterns

Pipe-and-filter pattern

Symbol table
Syntax tree

Lexical Syntactic Semantic Code
analysis analysis analysis generation

Writing Maintainable Code Cynthia Kop

Early decisions
Architecture patterns

Call-and-return pattern

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice

Architecture patterns

Even-driven pattern

Event
system system system
Producers Y v A

Event

Event Bus
Transport

Event
Consumers

SYSCEITI SySLEITI Sys tem

Writing Maintainable Code

General advice

Coupling and Cohesion

Recap Early decisions Technical debt

Architecture patterns

Three-tier pattern

. GETLISTOF ALL * ADD ALL SALES
SALES MADE TOGETHER
. LAST YEAR . 1‘
SALE 1
QUERY SALE 2
SALE 3
\ SALEa
-—
i m—
| =
Storage

Database

Writing Maintainable Code

Recap Early decisions Technical debt Coupling and Cohesion

Architecture patterns

Challenge: design an architecture

Writing Maintainable Code Cynthia Kop

Early decisions
Architecture patterns

A warning

Avoid too much up-front design!

Writing Maintainable Code Cynthia Kop

Technical debt

“Current development speed is a function of past development
quality.” — Brian McAllister

Defect Resolution Time

OOk
Okt
ookt
oktotote
Fotedeteoke

21 28 35 42 49 56

Enhancement Resolution Time

ook sk
Yook kst
okt
okttt
ettt

e 21 28 35 42 49 -
Dennis Bulsma days

Writing Maintainable Code Cynthia Kop

Early decisions Technical debt Coupling and Cohesion General advice

Technical debt

“With borrowed money, you can do something sooner than you
might otherwise, but then until you pay back that money you'll be
paying interest. | thought borrowing money was a good idea, |
thought that rushing software out the door to get some experience
with it was a good idea, but that of course, you would eventually
go back and as you learned things about that software you would
repay that loan by refactoring the program to reflect your
experience as you acquired it."

Ward Cunningham

Writing Maintainable Code Cynthia Kop

Technical debt

guideliné

)

Writing Maintainable Code Cynthia Kop

Technical debt

“Improving maintainability does not require magic or rocket
science. A combination of relatively simple skills and knowledge,
plus the discipline and environment to apply them, leads to the

largest improvement in maintainability.” [p. xi]

“Maintainability is not an afterthought, but should be addressed
from the very beginning of a development project. Every
individual contribution counts.” [p. 4]

Joost Visser

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion

Writing high-quality code

¢ Coupling: how strong are the connections between separate
parts of your code?

® Cohesion: how well does code that is put together really
belong together?

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Coupling

strength of interconnections, measure of interdependence

® the more we must know about A to understand or work with
B, the higher their coupling

® increases with complexity and obscurity of interfaces
Goal: keep coupling low

® high coupling means greater cost to making changes
® high coupling makes it harder to test separate parts, and
decreases readability

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Types of coupling

From high coupling to low coupling:
® content coupling
® common coupling
® control coupling

® stamp coupling

data coupling

® message coupling

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Types of coupling

From high coupling to low coupling:
® content coupling
® common coupling
® control coupling

® stamp coupling

data coupling

® message coupling

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Content coupling

One module relies on the internal workings of another module.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Content coupling

public void addUserProps(string user, string *props){
[actions to load the user into variable _myUser]
_myUser.properties.append(props) ;

}

public string *queryUserProperties(string user){
addProperty(playername, {});
return copy(_myUser.properties);

}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Content coupling

class A {
int arr[3];
int [Jget_arr() { return arr; }

}

class B {
void myfun(A a) {
int brr[] = a.get_arr();
brr[1] = 2;
}
}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Types of coupling

From high coupling to low coupling:
® content coupling
® common coupling
® control coupling

® stamp coupling

data coupling

® message coupling

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Common coupling

Two or more modules share some information by using global data.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Common coupling

void £() { if (settings_screen == BIG) { ...} }

void g(int kind) { ...settings_screen = kind; ...}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Common coupling
class A {
C mydata;
void set_data(C data) { mydata
}
class B {
C mydata;
void set_data(C data) { mydata
}
void setup() {
A a;
B b;
C c;

data; }

data; }

a.set_data(c);
b.set_data(c);

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Common coupling in Discworld

Job market in Ankh-Morpork

® “Buy 2 red dresses and deliver them to Ms. Cosmopilite.”

Shop in Djelibeybi

® |s the only place in the game that sells red dresses.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Types of coupling

From high coupling to low coupling:
® content coupling
® common coupling
® control coupling

® stamp coupling

data coupling

® message coupling

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Control coupling

One module controls the flow of another.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Control coupling

void a(boolean flag) {
// do some shared preparation stuff
if (flag) { // do thing 1 }
else { // do thing 2 }

}

void b() {

a(true);

}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Control coupling

cleanupConnections(boolean force) {
Connection *remainder = new Array();
foreach (Connection ¢ in connections) {
int errcode = c.close();
if (errcode == 1) {
if (force) c.forceClose();
else remainder.add(c);

}
}

connections = remainder;

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Control coupling

bool updateBirth(string user, Date bd, bool verify){
int age = calculateAge(bd, time());
if (verify) {
if (age < 18) {
popup("You are too young to participate!\n");
return false;

}

Account account = loadUser (user);
user.setBirthday(bd) ;

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Types of coupling

From high coupling to low coupling:
® content coupling
® common coupling
® control coupling

® stamp coupling

data coupling

® message coupling

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Stamp coupling

A composite data structure is shared between modules.

Note: this is already pretty low coupling. But if several functions
only use parts of the same data structure, it may be worth splitting
the structure.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Stamp coupling
typedef struct rectangle {

int length, width, area, perimeter, color;
} RECTANGLE;

int calcArea(RECTANGLE r) {
return r.length * r.width;

}

void main() {
RECTANGLE rect;
rect.length = 7;
rect.width = 6;
rect.color = RED;
rect.area = calcArea(rect);

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Stamp coupling

class GameElements {
GameObject *board[WIDTH] [HEIGHT] ;
boolean minesVisible;
int timeOfNextReset();

}

class Player {
void init(GameElements ge) {
// find empty place on the board
// and put the player there

}
}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Types of coupling

From high coupling to low coupling:
® content coupling
® common coupling
® control coupling

® stamp coupling

data coupling

® message coupling

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Data coupling

Elementary data is passed between modules (for example: through
parameter passing).

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Data coupling

class A {
int k;

void £() {

int tmp = Util.sqrt(k);

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Data coupling
typedef struct rectangle {

int length, width, area, perimeter, color;
} RECTANGLE;

int calcArea(int length, int width) {
return r.length * r.width;

}

void main() {
RECTANGLE rect;
rect.length = 7;
rect.width = 6;
rect.color = RED;
rect.area = calcArea(rect.length, rect.width);

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Types of coupling

From high coupling to low coupling:
® content coupling
® common coupling
® control coupling

® stamp coupling

data coupling

® message coupling

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Message coupling

One module sends a message to another without passing any data.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling

Message coupling

void keyPressed(Key k) {

if (k.isEscapeKey()) {
foreach (KeyListener k1 in listeners) {

kl.escapePressed();

}
}
}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Cohesion

® strength of inner bonds, relationships

® concept of whether elements belong together or not, measure
of how focused the responsibilities are

® generally: the higher the cohesion within each module, the
looser the coupling between the modules

® high cohesion gives greater reusability and readibility, and
lower complexity
® in an OO setting:

® method cohesion
® class cohesion
® inheritance cohesion

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Class cohesion

Why different attributes and methods are together

Do they contribute to supporting exactly one concept?

Or can the methods be partitioned into groups, each
accessing (almost only) a distinct subset of attributes?

Splitting could introduce more coupling, but is still preferable.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Inheritance cohesion

® Why classes are together in a hierachy.
® Main reasons: generalisation-specialisation, code reuse

® More about this next week!

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Coincidental cohesion

Elements in a module are grouped together arbitrarily, with no
relationship between them.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Coincidental cohesion

class Utilities {

pretty_print(string format, Object[] data) { ... }
int average(int a, int b) { ... }
int maximum(int a, int b) { ... }

}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Coincidental cohesion

Elements in a module are grouped together because they are in
some way logically related, although their functionality is very
different.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Logical cohesion

module PolygonFunctionality() {
void areaOfTriangle(int a, int b, int c) { ... }
void perimeterOfRectangle(int a, int b) {...}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Temporal cohesion

Elements in a module are grouped together because they are used
at the same time.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Temporal cohesion

void init() {
count = 0;
open_student file();
error = null;

}

void error_recovery() {
[close open files]
[reset some variables]
[restart main loop]

}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

void tetris_block fall(int block-id) {
update_timer();
move_block_one_down(block_id) ;
if (block has landed(block_id)) {
PAUSE(100) ;
handle_landing(block_id);
}
}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Procedural cohesion

Elements in a module are grouped together because they are
executed sequentially to perform a certain task.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Procedural cohesion

void store_address(string address, string user) {
[verify that the user exists]
[verify that the address is valid]
[establish connection to the database]
[execute appropriate sql query]

}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Procedural cohesion

Two elements work on the same input data and/or produce the
same output data.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Communicational cohesion

void determine customer_details(int accountno) {
[do some work to find the name]
[do some work to find the loan balance]
return new c_details(name, balance)

}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Sequential cohesion

Parts of a module are grouped together because they should be
executed sequentially, with the output from one part serving as the
input to the next.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Sequential cohesion

void handle record(RECORD record) {
record.user = _my._user;
record.valid = check(record.user, record.account);
return record;

}

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Functional cohesion

In a single component, all the essential elements are combined
together for performing a single task, and only those.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Functional cohesion

float calculate_sine(int angle) { ... }
RECORD read transaction record(int trans id) { ... }
void assign seat(int user_id, int seat.id) { ... }

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Types of cohesion

Why code is together within a method/module/class, from worst
to best:

® coincidental

® |ogical

® temporal

® procedural

® communicational
® sequential

® functional

® atomic

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Atomic cohesion

A single component that cannot be reduced any further.

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Cohesion

Atomic cohesion

int myfun(x) {
return 5 * x + 3;
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice Agile design

Coupling and cohesion: an example

Challenge: room information in Discworld

This is God Str west of the junction with Blood Alley. There are
a lot of people of all races about here, each doing their own thing.
Just to the south is an old, dingy looking book store. God Street
continues west and southeast from here. A very brightly 1lit
restaurant has heen hastily built here.

The densely packed crowds make it difficult to move, and unpleasant
to breathe.

It is a very warm summer prime's afternoon with almost no wind and a
beautifully clear sky.

A street lamp is here.

Just here are quite a lot of people most of which are priests trying
to convert each other or, when possible, some unsuspecting
traveller, like you. There are also some old looking houses here on
both sides of the road - they appear to be occupied. God Street
goes east towards Short Street and west towards Cheap Street.

The densely packed crowds make it difficult to move, and unpleasant
to breathe.

It is a very warm summer prime's afternoon with almost no wind and a
beautifully clear sky.

A street lamp is here.
[Pittles: 1

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling and cohesion: an example

Challenge: room information in Discworld

882 varargs int move_with_look(mixed dest, string
messin, string messout) {

883 return_to_default_position(1);

884 if ((int)this_object()->move(dest, messin,

messout) != MOVEOK)

885 return O;

886 room_look();

887 return_to_default position(1);

888 return 1;

889 }

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling and cohesion: an example

Challenge: room information in Discworld

int room_look() {
if ('(interactive(this_object())))
return O;
this_object()->ignore from history("look");
this_object () ->bypass_queue() ;
command("look");
return 1;

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling and cohesion: an example

Challenge: room information in Discworld

The look command:
® calculates the degree of darkness (for visibility)
® checks the lookmap setting for the player

® calls environment (this _player())->long lookmap(dark,
lookmap)

prints the result to the player

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling and cohesion: an example

Challenge: room information in Discworld

1594 string long lookmap(int dark, int lookmap_-type) {
1695 if(dark)

1596 return O;

1697

1598 return lookmap_text(long(dark), lookmap_type) ;
1599 }

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling and cohesion: an example

Challenge: room information in Discworld

string lookmap text(string text, int lookmap_type) {

string ret = text;
string map = lookmap(this_player()->map_setting());
send_room_info(this_player(), map);
switch(lookmap_type) {

case NONE: return text;

case TOP: return map + text;

case LEFT: return combine(map, text);

}
}

Writing Maintainable Code Cynthia Kop

Recap Early decisions Technical debt Coupling and Cohesion General advice

Coupling and cohesion: an example

Challenge: room information in Discworld

void send_room_info(object player, string map) {

// send metadata "room.info": room and city name

if (player->map_setting() == ASCIIMAP) {
string writmap = lookmap (WRITTENMAP) ;
player->send metadata("room.map", map);
player->send metadata("room.writmap", writmap);

} else {
string asciimap = lookmap(ASCIIMAP);
player->send metadata("room.map", asciimap);
player->send metadata("room.writtenmap", map);

}
1

Writing Maintainable Code Cynthia Kop

Coupling and Cohesion
Coupling and cohesion: an example

Challenge: room information in Discworld

® |dentify where coupling and cohesion are bad.

® Suggest improvements to the design of the “player enters a
room, is given a room description and metadata” code.

Writing Maintainable Code Cynthia Kop

General advice

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

Writing Maintainable Code Cynthia Kop

General advice

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
[close open files]
[reset some variables]
[restart main loop]

}

Writing Maintainable Code Cynthia Kop

General advice

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
close_all open_files();
reset_file_data();
restart main loopQ);

}

Writing Maintainable Code Cynthia Kop

Early decisions Technical debt Coupling and Cohesion General advice

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
close_all open_files();
reset_file_data();
restart main loopQ);

}

void store_address(string address, string user) {
[verify that the user exists]
[verify that the address is valid]
[establish connection to the database]
[execute appropriate sql query]

Writing Maintainable Code Cynthia Kop

Early decisions Technical debt Coupling and Cohesion General advice

Goal: functional cohesion in all modules (functions, units)

Method: move cohesive sub-functionality into separate modules!

void error recovery() {
close_all open_files();
reset_file_data();
restart main loopQ);

}

void store_address(string address, string user) {
int user_index = find_ user (user);
validate_address();
class db = open_db_connection();
db.store_address(user_index, address);

Writing Maintainable Code Cynthia Kop

General advice

Goal: functional cohesion in all modules (functions, units)

Note: moving functionality into separate modules is not always
enough!

void tetris_block_fall(int block-id) {
update_timer();
move_block_one_down(block_id) ;
if (block has landed(block_id)) {
PAUSE(100) ;
handle_landing(block_id);
}
}

However: having the separate functions helps with restructuring!

Writing Maintainable Code Cynthia Kop

General advice

Basic Guidelines

Way of

Code Architecture .
working

. . Separate concerns in
Write small units of code P
modules
Write simple units of
code

Automate tests
Couple architecture
components loosely

Keep architecture
components balanced

te code once
Keep unit interfaces
small

Write clean code

Keep your codebase
small

— Software Improvement Group

Writing Maintainable Code Cynthia Kop

General advice

Basic Guidelines

Way of
working

Limit units to 15 lines of Avoid modules larger
code than 400 lines of code Withe atemaies) fesis
Limit branch points per Hide classes from other et @y all @t
unitto 4 components, no cycles
Do not copy code longer Aim for 6-12 top-level
than 6 lines components Stick to the seven
Limit parameters per unit Keep codebase below “boy scout rules”
to4 200,000 lines of code

— Software Improvement Group

Code Architecture

Writing Maintainable Code Cynthia Kop

General advice

Keep your functions (units) manageable.

® Functions should not be too long (guideline: < 15 lines)

® Functions should not have too many decisions in them
(guideline: < 4 branch points)

public void doGet(HttpServietRequest req, HttpServietResponse resp) if (sum % 11 == 0) {
throws ServietException, I0Exception { totalBalance += results.getFloat("balance");
resp.setContentType("application/json"); resp.getWriter().print(
try { "{\"" + results.getString("account”) + "\":"
Connection conn = DriverManager. + results.getFloat("balance”) + "}');
getConnection(this.conf.getProperty("handler.jdbcurl")); }
ResultSet results = if (results.islast()) {
conn. createStatement() resp.gethiriter().println("1,");
_executeQuery(} else
"SELECT account, balance FROM ACCTS WHERE id=" resp.gethiriter().print(",");
+ req.getParameter (conf. }
getProperty("request.parametername”))); }
float totalBalance = 0; resp.getiiriter().println("\"total\":" + totalBalance + "}");
resp.gethriter().print("{\"balances\":["); } catch (SQLException e) {
while (results.next()) { System.out.println("SQL exception: " + e.getMessage());
// Assuming result is 9-digit bank account number, }
// validate with 11-test }
int sum
f ti=0; i< results.getString(", t" i i P
or (wl:ng:m‘ ‘_:‘) ;esu s.getString("account") Un|t§ with B s
sum = sum + (9 - i) 15+ lines of code 38 lines of
* Character.getNumericValue(results.getString(code and 5
"account").charAt(i)); a a
} Units with branch
4+ branch points (el

Early decisions Technical debt Coupling and Cohesion General advice

Limit number of parameters

int *parry modifier(object defender, object attacker,
object defense_weapon, object attack_weapon,
int parry_defense_bonus, int distance,
int give feedback) {

}

Fine when used as a stand-alone occurrence (although it may be
indicative that your function is too large / complex), but often the
same large set of parameters occurs in multiple places. Should
some of these parameters be combined into a single structure, e.g.,
attack_data?

Writing Maintainable Code Cynthia Kop

General advice

Duplicate code

If you copy IV lines of code
with N >3
then you should do (N — 3) % 5 pushups!

® an idea should only be expressed in one place (ease of change)

® you already need it more than once — make it more reusable!

Writing Maintainable Code Cynthia Kop

Early decisions Technical debt Coupling and Cohesion General advice

Keep your architecture manageable.
® Modules should not be too long (guideline: < 400 lines)
® Overall codebase should not be too large (guideline: < 200k
lines)
® Few top-level components, minimise connections between
them

Unbalanced components . .
g 4 |
BRE 2im for 6 t0 12 [GE Cyclic dependencies

RIS between architecture
L 2 . BACK] components
approximate equal size

Writing Maintainable Code Cynthia Kop

General advice

Keep your architecture manageable.

Unbalanced components,
i aim for 6 to 12
components of
approximate equal size

Clear hierarchy, directed
dependencies, between 6 — 12
components

WRONG
WAY

u

WRONG Cyclic dependencies
between architecture
BACK

components

Writing Maintainable Code Cynthia Kop

General advice

Test all non-trivial code automatically

Manual:
void test_validation() {
do {
string num = input("Type account number: ");
println("Result: " + validate_account(num));

}
}

Writing Maintainable Code Cynthia Kop

General advice

Test all non-trivial code automatically

Automatic:
import static org.junit.jupiter.api.Assertions.assertEquals;

import org.junit.jupiter.api.Test;

public class MyTests {

@Test
public void multlpllcatlonOfZeroIntegersshouldReturnZero() {
MyClass tester = new MyClass(); MyClass is tested

assertEquals(0, tester.multiply(10, 0), "10 x O must be 0");
assertEquals(0, tester.multiply(0, 10), "0 x 10 must be 0");
assertEquals(0, tester.multiply(0, 0), "0 x 0 must be 0");

Writing Maintainable Code Cynthia Kop

General advice

More
Pressure vou Less Tests
y You Write
feel
Less
: Less Stable
Productive
your code
and accurate
becomes

you are

Writing Maintainable Code Cynthia Kop

General advice

Boy Scout Rule

Leave the campground cleaner than you found it.

® [eave no unit level code smells behind.
® | eave no bad comments behind.

® | eave no code in comments behind.

® | eave no dead code behind.

® | eave no long identifier names behind.
® | eave no magic constants behind.

® | eave no badly handled exceptions behind.

Writing Maintainable Code Cynthia Kop

Agile design

Maintaining a lowly coupled, highly cohesive design that
can adapt to change

The key to maximizi Mg new requirements
and changes to existi in designing your
S so they can evolve accordingly. — Gang ©

Avoid premature generalisation!

Writing Maintainable Code Cynthia Kop

Agile design

Design in eXtreme Programming

When implementing a new feature:
©® write a test
@® write code that satisfies the test
© look back and realise if a change in design is required
@ refactor

If design documents are required, make them afterwards.

Writing Maintainable Code Cynthia Kop

Agile design

Incremental design

During/after implementing, ask questions:
® |s this code similar to other code in the system?
® Are class responsibilities clearly defined?

® Are concepts clearly represented?
® How well does this class interact with other classes?

If there is a problem:
® Jot it down, and finish what you're doing.
® Discuss with teammates (if needed).

® Follow the ten-minute rule.

Writing Maintainable Code Cynthia Kop

Agile design

Incremental design

® The first time you create a design element, be completely
specific.

® The second time you work with an element, make it general
enough to solve both problems.

® The third time, generalise it further.

® By the fourth or fifth time, it's probably perfect!

Writing Maintainable Code Cynthia Kop

Agile design

Incremental design

Value

Breakthrough

Time/Refactoring

Writing Maintainable Code Cynthia Kop

Agile design

Simplicity in agile design
Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.

— Antoine de Saint-Exupéry

Any intelligent fool can make things bigger, more complex and
more violent. It takes a touch of genius and a lot of courage
to move in the opposite direction.

— Albert Einstein

Keep It Simple, Stupid
— U.S. Navy

Agile design

Simplicity in agile design

Keep It Simple, Stupid

The system should be:
® appropriate for the intended audience
® communicative
® factored

® minimal

Writing Maintainable Code Cynthia Kop

Agile design

Agile and incremental design

See also:

® http://www.jamesshore.com/Agile-Book/simple_
design.html

® http://www.jamesshore.com/Agile-Book/incremental _
design.html

Writing Maintainable Code Cynthia Kop

http://www.jamesshore.com/Agile-Book/simple_design.html
http://www.jamesshore.com/Agile-Book/simple_design.html
http://www.jamesshore.com/Agile-Book/incremental_design.html
http://www.jamesshore.com/Agile-Book/incremental_design.html

	Recap
	Early decisions
	Architecture patterns

	Technical debt
	Coupling and Cohesion
	Coupling
	Cohesion
	Coupling and cohesion: an example

	General advice
	Agile design

